Lake Water Surface Area (WSA) plays a vital role in environmental preservation and future water resource planning and management. Accurately mapping, monitoring and forecasting Lake WSA changes are of great importance to regulatory agencies. This study used the MODIS satellite images to extract a monthly time series of WSA of two lakes located in Iran from 2001 to 2019. Following a consequence of image and time series preprocessing to obtain the preprocessed lake surface area time series, the outcomes were modeled by the Long-Short-Term Memory (LSTM) deep learning (DL) method, the stochastic Seasonal Auto-Regressive Integrated Moving Average (SARIMA) method and hybridization of these two techniques with the objective of developing WSA forecasts. After separate standardization and normalization of AL TS and reevaluation of the preprocessed data, the SARIMA (1, 0, 0) (0, 1, 1)12 model outperformed sole LSTM models with correlation index of (R) 0.819, mean absolute error (MAE) of 49.425 and mean absolute percentage error (MAPE) of 0.106. On the other hand, the hybridization (stochastic-DL) enhanced the reproduction of the primal statistical properties of WSA data and caused better mediation. However, the other accuracy indices did not change markedly (R 0.819, MAE 49.310, MAPE 0.105). The multi-step preprocessing and reevaluation also caused all LSTM models to produce their best results by less than 12 inputs.