[1] Y. Yang, F. Wudl, Organic Electronics: From Materials to Devices, Adv. Mater. 21 (2009) 1401–1403. https://doi.org/10.1002/adma.200900844.
[2] Z.A. Lewicka, W.W. Yu, B.L. Oliva, E.Q. Contreras, V.L. Colvin, Photochemical behavior of nanoscale TiO2 and ZnO sunscreen ingredients, J. Photochem. Photobiol. A Chem. (2013). https://doi.org/10.1016/j.jphotochem.2013.04.019.
[3] S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chinese Sci. Bull. (2011). https://doi.org/10.1007/s11434-011-4476-1.
[4] C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, C. Pan, Present Perspectives of Advanced Characterization Techniques in TiO2-Based Photocatalysts, ACS Appl. Mater. Interfaces. (2017). https://doi.org/10.1021/acsami.7b00496.
[5] B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature. (1991). https://doi.org/10.1038/353737a0.
[6] H. Wang, Y. Liu, M. Li, H. Huang, H.M. Xu, R.J. Hong, H. Shen, Multifunctional TiO2 nanowires-modified nanoparticles bilayer film for 3D dye-sensitized solar cells, Optoelectron. Adv. Mater. Rapid Commun. (2010).
[7] R. Srivastava, B.C. Yadav, Nanaostructured ZnO, ZnO-tio2 and ZnO-Nb2O5 as solid state humidity sensor, Adv. Mater. Lett. (2012). https://doi.org/10.5185/amlett.2012.4330.
[8] A. Rahimpour, M. Jahanshahi, B. Rajaeian, M. Rahimnejad, TiO2 entrapped nano-composite PVDF/SPES membranes: Preparation, characterization, antifouling and antibacterial properties, Desalination. (2011). https://doi.org/10.1016/j.desal.2011.05.049.
[9] H. Lin, A.K. Rumaiz, M. Schulz, D. Wang, R. Rock, C.P. Huang, S.I. Shah, Photocatalytic activity of pulsed laser deposited TiO2 thin films, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (2008). https://doi.org/10.1016/j.mseb.2008.05.016.
[10] H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, Electrical and optical properties of TiO2 anatase thin films, J. Appl. Phys. (1994). https://doi.org/10.1063/1.356306.
[11] A. Goossens, E.L. Maloney, J. Schoonman, Gas-Phase Synthesis of Nanostructured Anatase TiO2, Chem. Vap. Depos. (1998). https://doi.org/10.1002/(SICI)1521-3862(199805)04:03<109::AID-CVDE109>3.0.CO;2-U.
[12] S. Di Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite, Phys. Rev. B. (1995). https://doi.org/10.1103/PhysRevB.51.13023.
[13] U. Bach, D. Lupo, P. Comte, J.E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies, Nature. (1998). https://doi.org/10.1038/26936.
[14] A. Wypych, I. Bobowska, M. Tracz, A. Opasinska, S. Kadlubowski, A. Krzywania-Kaliszewska, J. Grobelny, P. Wojciechowski, Dielectric Properties and Characterisation of Titanium Dioxide Obtained by Different Chemistry Methods, J. Nanomater. 2014 (2014) 124814. https://doi.org/10.1155/2014/124814.
[15] S.Y. Lee, S.J. Park, TiO2 photocatalyst for water treatment applications, J. Ind. Eng. Chem. (2013). https://doi.org/10.1016/j.jiec.2013.07.012.
[16] N.M. Dimitrijevic, S. Tepavcevic, Y. Liu, T. Rajh, S.C. Silver, D.M. Tiede, Nanostructured TiO2/polypyrrole for visible light photocatalysis, J. Phys. Chem. C. (2013). https://doi.org/10.1021/jp405562b.
[17] C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites, J. Mater. Chem. (2005). https://doi.org/10.1039/b509097k.
[18] S.J. Blanksby, G.B. Ellison, Bond dissociation energies of organic molecules, Acc. Chem. Res. (2003). https://doi.org/10.1021/ar020230d.
[19] E. Filippo, C. Carlucci, A.L. Capodilupo, P. Perulli, F. Conciauro, G.A. Corrente, G. Gigli, G. Ciccarella, Enhanced photocatalytic activity of pure anatase Tio2 and Pt-Tio2 nanoparticles synthesized by green microwave assisted route, Mater. Res. (2015). https://doi.org/10.1590/1516-1439.301914.
[20] P. Meredith, T. Sarna, The physical and chemical properties of eumelanin., Pigment Cell Res. 19 (2006) 572–594. https://doi.org/10.1111/j.1600-0749.2006.00345.x.
[21] T.G. Costa, R. Younger, C. Poe, P.J. Farmer, B. Szpoganicz, Studies on synthetic and natural melanin and its affinity for Fe(III) ion, Bioinorg. Chem. Appl. 2012 (2012). https://doi.org/10.1155/2012/712840.
[22] V. Ball, D. Del Frari, M. Michel, M.J. Buehler, V. Toniazzo, M.K. Singh, J. Gracio, D. Ruch, Deposition Mechanism and Properties of Thin Polydopamine Films for High Added Value Applications in Surface Science at the Nanoscale, Bionanoscience. 2 (2012) 16–34. https://doi.org/10.1007/s12668-011-0032-3.
[23] P.P.A.P. Riley, Melanin, Int J Biochem Cell Biol. 29 (1997) 1235–1239. https://doi.org/10.1016/S1357-2725(97)00013-7.
[24] N. Madkhali, H.R. Alqahtani, S. Al, T. Amel, L. Adel, Control of optical absorption and fluorescence spectroscopies of natural melanin at different solution concentrations, Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-1936-3.
[25] A. Laref, N. Madkhali, H.R. Alqahtani, X. Wu, S. Laref, Electronic structures and optical spectroscopies of 3d-transition metals-doped melanin for spintronic devices application, J. Magn. Magn. Mater. 491 (2019) 165513. https://doi.org/10.1016/j.jmmm.2019.165513.
[26] A.B. Mostert, B.J. Powell, F.L. Pratt, G.R. Hanson, T. Sarna, I.R. Gentle, P. Meredith, Role of semiconductivity and ion transport in the electrical conduction of melanin, Proc Natl Acad Sci U S A. 109 (2012) 8943–8947. https://doi.org/10.1073/pnas.1119948109.
[27] D.J. Kim, K.Y. Ju, J.K. Lee, The synthetic melanin nanoparticles having an excellent binding capacity of heavy metal ions, Bull. Korean Chem. Soc. 33 (2012) 3788–3792. https://doi.org/10.5012/bkcs.2012.33.11.3788.
[28] P. Vairale, V. Waman, A. Mayabadi, H. Pathan, S. Jadkar, V. Sathe, Electrochemical Synthesis of Melanin Thin Films: Evolution of Structural and Optical Properties, Int. J. Adv. Res. Phys. Sci. 1 (2014) 35–45. www.arcjournals.org.
[29] T.S. R., P. A.P.S., R. Niranjan, M. Kaushik, T. Devasena, J. Kumar, R. Chelliah, D.H. Oh, S. Swaminathan, D.V. G., Metal oxide curcumin incorporated polymer patches for wound healing, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.01.143.
[30] A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, FTIR and raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol, Appl. Sci. (2017). https://doi.org/10.3390/app7010049.
[31] A. Pezzella, L. Capelli, A. Costantini, G. Luciani, F. Tescione, B. Silvestri, G. Vitiello, F. Branda, Towards the development of a novel bioinspired functional material: Synthesis and characterization of hybrid TiO 2/DHICA-melanin nanoparticles, Mater. Sci. Eng. C. (2013). https://doi.org/10.1016/j.msec.2012.08.049.
[32] L.F. Wang, J.W. Rhim, Isolation and characterization of melanin from black garlic and sepia ink, LWT. (2019). https://doi.org/10.1016/j.lwt.2018.09.033.
[33] N. Madkhali, H.R. Alqahtani, S. Al-Terary, A. Laref, A. Haseeb, The doping effect of Fe, Cu and Zn ions on the structural and electrochemical properties and the thermostability of natural melanin extracted from Nigella sativa L, J. Mol. Liq. (2019). https://doi.org/10.1016/j.molliq.2019.04.063.
[34] M.M. Mahlambi, A.K. Mishra, S.B. Mishra, R.W. Krause, B.B. Mamba, A.M. Raichur, Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst, in: J. Therm. Anal. Calorim., 2012. https://doi.org/10.1007/s10973-011-1852-7.
[35] A.M. Gómez-Marín, C.I. Sánchez, Thermal and mass spectroscopic characterization of a sulphur-containing bacterial melanin from Bacillus subtilis, J. Non. Cryst. Solids. (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.054.
[36] I.E. Pralea, R.C. Moldovan, A.M. Petrache, M. Ilieș, S.C. Hegheș, I. Ielciu, R. Nicoară, M. Moldovan, M. Ene, M. Radu, A. Uifălean, C.A. Iuga, From extraction to advanced analytical methods: The challenges of melanin analysis, Int. J. Mol. Sci. (2019). https://doi.org/10.3390/ijms20163943.
[37] S.S. Sajjan, O. Anjaneya, G.B. Kulkarni, A.S. Nayak, S.B. Mashetty, T.B. Karegoudar, Properties and functions of melanin pigment from Klebsiella sp. GSK, Korean J. Microbiol. Biotechnol. (2013). https://doi.org/10.4014/kjmb.1210.10002.
[38] W. Xie, E. Pakdel, D. Liu, L. Sun, X. Wang, Waste-Hair-Derived Natural Melanin/TiO2 Hybrids as Highly Efficient and Stable UV-Shielding Fillers for Polyurethane Films, ACS Sustain. Chem. Eng. (2020). https://doi.org/10.1021/acssuschemeng.9b03514.
[39] Shimadzu Corporation, Measurements of Band Gap in Compound Semiconductors - Band Gap Determination from Diffuse Reflectance Spectra -, Measurement. (1800).
[40] W. Xie, E. Pakdel, Y. Liang, D. Liu, L. Sun, X. Wang, Natural melanin/TiO2 hybrids for simultaneous removal of dyes and heavy metal ions under visible light, J. Photochem. Photobiol. A Chem. (2020). https://doi.org/10.1016/j.jphotochem.2019.112292.
[41] F. Urbach, The Long-Wavelength Edge of Photographic Sensitivity and of the Electronic Absorption of Solids, Phys. Rev. 92 (1953) 1324. https://doi.org/10.1103/PhysRev.92.1324.