1. Balfourier, F. et al. Worldwide phylogeography and history of wheat genetic diversity. Sci. Adv. (2019). doi:10.1126/sciadv.aav0536
2. Jatayev, S. et al. Green revolution “stumbles” in a dry environment: Dwarf wheat with Rht genes fails to produce higher grain yield than taller plants under drought . Plant. Cell Environ. (2020). doi:10.1111/pce.13819
3. Zeven, A. C. Landraces: A review of definitions and classifications. Euphytica (1998). doi:10.1023/A:1018683119237
4. Lopes, M. S. et al. Exploiting genetic diversity from landraces in wheat breeding for adaptation to climate change. J. Exp. Bot. (2015). doi:10.1093/jxb/erv122
5. Horvath, A. et al. Analysis of diversity and linkage disequilibrium along chromosome 3B of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 119, 1523–1537 (2009).
6. Vikram, P. et al. Unlocking the genetic diversity of Creole wheats. Sci. Rep. 6, 1–13 (2016).
7. Plekhanova, E. et al. Genomic and phenotypic analysis of Vavilov’s historic landraces reveals the impact of environment and genomic islands of agronomic traits. Sci. Rep. 7, 4816 (2017).
8. Winfield, M. O. et al. High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol. J. 14, 1195–1206 (2016).
9. Rosyara, U. et al. Genetic Contribution of Synthetic Hexaploid Wheat to CIMMYT’s Spring Bread Wheat Breeding Germplasm. Sci. Rep. 9, 1–11 (2019).
10. Feuillet, C., Langridge, P. & Waugh, R. Cereal breeding takes a walk on the wild side. Trends in Genetics (2008). doi:10.1016/j.tig.2007.11.001
11. Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).
12. Juhász, A. et al. Identification, cloning and characterisation of a HMW-glutenin gene from an old Hungarian wheat variety, Bánkúti 1201. Euphytica 119, 75–79 (2001).
13. Juhász, A. et al. Bánkúti 1201—an old Hungarian wheat variety with special storage protein composition. Theor. Appl. Genet. 107, 697–704 (2003).
14. Rakszegi, M. et al. Starch Properties in Different Lines of an old Hungarian Wheat Variety, Bánkúti 1201. Starch - Stärke 55, 397–402 (2003).
15. Lelley, J. & Rajhathy, T. Wheat and its breeding. (Akademiai Kiado, 1955).
16. Lelley, J. The variety issue and Hungarian wheat. (Mezogadasagi Kiado, 1967).
17. Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. B Biol. Sci. 363, 557–572 (2008).
18. Ladejobi, O. et al. Reference Genome Anchoring of High-Density Markers for Association Mapping and Genomic Prediction in European Winter Wheat. Front. Plant Sci. 10, 1–13 (2019).
19. Zhao, K. et al. An Arabidopsis Example of Association Mapping in Structured Samples. PLoS Genet. 3, e4 (2007).
20. Haudry, A. et al. Grinding up Wheat: A Massive Loss of Nucleotide Diversity Since Domestication. Mol. Biol. Evol. 24, 1506–1517 (2007).
21. Akhunov, E. D. et al. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11, 702 (2010).
22. Winfield, M. O. et al. High-density genotyping of the A.E. Watkins Collection of hexaploid landraces identifies a large molecular diversity compared to elite bread wheat. Plant Biotechnol. J. 16, 165–175 (2018).
23. Kabbaj, H. et al. Genetic Diversity within a Global Panel of Durum Wheat (Triticum durum) Landraces and Modern Germplasm Reveals the History of Alleles Exchange. Front. Plant Sci. 8, (2017).
24. Alipour, H. et al. Genotyping-by-Sequencing (GBS) Revealed Molecular Genetic Diversity of Iranian Wheat Landraces and Cultivars. Front. Plant Sci. 8, (2017).
25. Rufo, R., Alvaro, F., Royo, C. & Soriano, J. M. From landraces to improved cultivars: Assessment of genetic diversity and population structure of Mediterranean wheat using SNP markers. PLoS One 14, e0219867 (2019).
26. Romero Navarro, J. A. et al. A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat. Genet. 49, 476–480 (2017).
27. Leung, H. et al. Allele mining and enhanced genetic recombination for rice breeding. Rice 8, 34 (2015).
28. Wang, S. et al. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796 (2014).
29. Šafář, J. et al. Development of Chromosome-Specific BAC Resources for Genomics of Bread Wheat. Cytogenet. Genome Res. 129, 211–223 (2010).
30. Edae, E. A., Byrne, P. F., Haley, S. D., Lopes, M. S. & Reynolds, M. P. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor. Appl. Genet. 127, 791–807 (2014).
31. Barth, J. M. I., Damerau, M., Matschiner, M., Jentoft, S. & Hanel, R. Genomic Differentiation and Demographic Histories of Atlantic and Indo-Pacific Yellowfin Tuna (Thunnus albacares) Populations. Genome Biol. Evol. 9, 1084–1098 (2017).
32. Puechmaille, S. J. The program <scp>structure</scp> does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 16, 608–627 (2016).
33. He, F. et al. Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nat. Genet. 51, 896–904 (2019).
34. Pasha, I., Anjum, F. M. & Morris, C. F. Grain Hardness: A Major Determinant of Wheat Quality. Food Sci. Technol. Int. 16, 511–522 (2010).
35. Muqaddasi, Q. H. et al. Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci. Rep. 10, 12541 (2020).
36. Urruty, N., Tailliez-Lefebvre, D. & Huyghe, C. Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agron. Sustain. Dev. 36, 15 (2016).
37. Feulner, G. Global Challenges: Climate Change. Glob. Challenges 1, 5–6 (2017).
38. Olsen, K. M. & Gross, B. L. Detecting multiple origins of domesticated crops. Proc. Natl. Acad. Sci. U. S. A. 105, 13701–13702 (2008).
39. Asseng, S. et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 5, 143–147 (2015).
40. Kumar, D. & Kalita, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods 6, 8 (2017).
41. Vikram, P. et al. Unlocking the genetic diversity of Creole wheats. Sci. Rep. 6, 23092 (2016).
42. King, J. et al. A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol. J. 15, 217–226 (2017).
43. Singh, N. et al. Efficient curation of genebanks using next generation sequencing reveals substantial duplication of germplasm accessions. Sci. Rep. 9, 650 (2019).
44. Thuillet, A. C., Bataillon, T., Poirier, S., Santoni, S. & David, J. L. Estimation of long-term effective population sizes through the history of durum wheat using microsatellite data. Genetics 169, 1589–1599 (2005).
45. Joukhadar, R., Daetwyler, H. D., Bansal, U. K., Gendall, A. R. & Hayden, M. J. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat. Front. Plant Sci. 8, (2017).
46. Borojevic, K. & Borojevic, K. The transfer and history of ‘reduced height genes’ (Rht) in wheat from Japan to Europe. J. Hered. 96, 455–459 (2005).
47. Baenziger, P. S. & Depauw, R. M. Wheat Breeding: Procedures and Strategies. in Wheat Science and Trade 273–308 (Wiley-Blackwell, 2009). doi:10.1002/9780813818832.ch13
48. Mascher, M. et al. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 51, (2019).
49. Saïdou, A. A., Thuillet, A. C., Couderc, M., Mariac, C. & Vigouroux, Y. Association studies including genotype by environment interactions: Prospects and limits. BMC Genet. 15, (2014).
50. Salvi, S. & Tuberosa, R. The crop QTLome comes of age. Curr. Opin. Biotechnol. 32, 179–185 (2015).
51. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).
52. Morris, C. F. Puroindolines : the molecular basis of wheat grain hardness . Plant Mol Biol Puroindolines : the molecular genetic basis of wheat grain hardness. Plant Mol. Biol. 48, 633–647 (2015).
53. JUKES, T. H. & CANTOR, C. R. Evolution of Protein Molecules. in Mammalian Protein Metabolism 21–132 (Elsevier, 1969). doi:10.1016/B978-1-4832-3211-9.50009-7
54. Rozas, J. et al. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
55. Liu, S. et al. Molecular markers linked to important genes in hard winter wheat. Crop Sci. 54, 1304–1321 (2014).
56. Juliana, P. et al. Improving grain yield, stress resilience and quality of bread wheat using large-scale genomics. Nat. Genet. 51, 1530–1539 (2019).
57. Yu, Y., Ouyang, Y. & Yao, W. ShinyCircos: An R/Shiny application for interactive creation of Circos plot. Bioinformatics 34, 1229–1231 (2018).
58. Amiryousefi, A., Hyvönen, J. & Poczai, P. iMEC: Online Marker Efficiency Calculator. Appl. Plant Sci. 6, e01159 (2018).
59. Bradbury, P. J. et al. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635 (2007).
60. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).
61. Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).
62. Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 35, 518–522 (2018).
63. Rambaut, A. FigTree, a graphical viewer of phylogenetic trees for producing publication-ready figures. (2020). Available at: http://tree.bio.ed.ac.uk/software/figtree/.
64. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–59 (2000).
65. Stift, M., Kolář, F. & Meirmans, P. G. Structure is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity (Edinb). 123, 429–441 (2019).
66. EVANNO, G., REGNAUT, S. & GOUDET, J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol. Ecol. 14, 2611–2620 (2005).
67. Li, Y.-L. & Liu, J.-X. <scp>StructureSelector</scp> : A web-based software to select and visualize the optimal number of clusters using multiple methods. Mol. Ecol. Resour. 18, 176–177 (2018).
68. Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. <scp>Clumpak</scp> : a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).
69. Bouckaert, R. et al. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 10, e1003537 (2014).
70. C. R. Martin, R. Rousser & D. L. Brabec. Development of a Single-kernel Wheat Characterization System. Trans. ASAE 36, 1399–1404 (1993).
71. Shapiro, S. S. & Wilk, M. B. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52, 591 (1965).
72. Appels, R. et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science (80-. ). 361, eaar7191 (2018).
73. Grimm, D. G. et al. easyGWAS: A cloud-based platform for comparing the results of genome-wide association studies. Plant Cell 29, 5–19 (2017).
74. Hyun, M. K. et al. Efficient control of population structure in model organism association mapping. Genetics 178, 1709–1723 (2008).
75. Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).