Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. doi:10.2307/2346101
Bryant KG, Chae YC, Martinez RL, Gordon JC, Elokely KM, Kossenkov A V., Grant S, Childers WE, Abou-Gharbia M, Altieri DC. 2017. A Mitochondrial-targeted purine-based HSP90 antagonist for leukemia therapy. Oncotarget. doi:10.18632/oncotarget.23097
Buck MDD, O’Sullivan D, Klein Geltink RII, Curtis JDD, Chang CH, Sanin DEE, Qiu J, Kretz O, Braas D, van der Windt GJJW, Chen Q, Huang SCC, O’Neill CMM, Edelson BTT, Pearce EJJ, Sesaki H, Huber TBB, Rambold ASS, Pearce ELL. 2016. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell. doi:10.1016/j.cell.2016.05.035
Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, Grant B, Sharman JP, Coleman M, Wierda WG, Jones JA, Zhao W, Heerema NA, Johnson AJ, Sukbuntherng J, Chang BY, Clow F, Hedrick E, Buggy JJ, James DF, O’Brien S. 2013. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. doi:10.1056/NEJMoa1215637
Calvo SE, Clauser KR, Mootha VK. 2016. MitoCarta2.0: An updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. doi:10.1093/nar/gkv1003
Chevrollier A, Loiseau D, Reynier P, Stepien G. 2011. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. Biochim Biophys Acta - Bioenerg. doi:10.1016/j.bbabio.2010.10.008
Cohen BH. 2010. Pharmacologic effects on mitochondrial function. Dev Disabil Res Rev. doi:10.1002/ddrr.106
Deutsch EW, Csordas A, Sun Z, Jarnuczak A, Perez-Riverol Y, Ternent T, Campbell DS, Bernal-Llinares M, Okuda S, Kawano S, Moritz RL, Carver JJ, Wang M, Ishihama Y, Bandeira N, Hermjakob H, Vizcaíno JA. 2017. The ProteomeXchange consortium in 2017: Supporting the cultural change in proteomics public data deposition. Nucleic Acids Res. doi:10.1093/nar/gkw936
Dykens JA, Will Y. 2007. The significance of mitochondrial toxicity testing in drug development. Drug Discov Today. doi:10.1016/j.drudis.2007.07.013
Farge T, Saland E, de Toni F, Aroua N, Hosseini M, Perry R, Bosc C, Sugita M, Stuani L, Fraisse M, Scotland S, Larrue C, Boutzen H, Féliu V, Nicolau-Travers ML, Cassant-Sourdy S, Broin N, David M, Serhan N, Sarry A, Tavitian S, Kaoma T, Vallar L, Iacovoni J, Linares LK, Montersino C, Castellano R, Griessinger E, Collette Y, Duchamp O, Barreira Y, Hirsch P, Palama T, Gales L, Delhommeau F, Garmy-Susini BH, Portais JC, Vergez F, Selak M, Danet-Desnoyers G, Carroll M, Récher C, Sarry JE. 2017. Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism. Cancer Discov 7:716–735. doi:10.1158/2159-8290.CD-16-0441
Fisher-Wellman KH, Davidson MT, Narowski TM, Lin C Te, Koves TR, Muoio DM. 2018. Mitochondrial Diagnostics: A Multiplexed Assay Platform for Comprehensive Assessment of Mitochondrial Energy Fluxes. Cell Rep Sep 25;24:3593–3606. doi:10.1016/j.celrep.2018.08.091
Fisher-Wellman KH, Draper JA, Davidson MT, Williams AS, Narowski TM, Slentz DH, Ilkayeva OR, Stevens RD, Wagner GR, Najjar R, Hirschey MD, Thompson JW, Olson DP, Kelly DP, Koves TR, Grimsrud PA, Muoio DM. 2019. Respiratory Phenomics across Multiple Models of Protein Hyperacylation in Cardiac Mitochondria Reveals a Marginal Impact on Bioenergetics. Cell Rep. doi:10.1016/j.celrep.2019.01.057
Glancy B, Willis WT, Chess DJ, Balaban RS. 2013. Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry 52:2793–2809. doi:10.1021/bi3015983
Goto M, Miwa H, Shikami M, Tsunekawa-Imai N, Suganuma K, Mizuno S, Takahashi M, Mizutani M, Hanamura I, Nitta M. 2014a. Importance of glutamine metabolism in leukemia cells by energy production through TCA cycle and by redox homeostasis. Cancer Invest 32:241–247. doi:10.3109/07357907.2014.907419
Goto M, Miwa H, Suganuma K, Tsunekawa-Imai N, Shikami M, Mizutani M, Mizuno S, Hanamura I, Nitta M. 2014b. Adaptation of leukemia cells to hypoxic condition through switching the energy metabolism or avoiding the oxidative stress. BMC Cancer 14:1–9. doi:10.1186/1471-2407-14-76
Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, Martinez Zurita A, Sun J, Ten Hacken E, Baranowski K, Thompson PA, Heo JM, Cartun Z, Aygün O, Iorgulescu JB, Zhang W, Notarangelo G, Livitz D, Li S, Davids MS, Biran A, Fernandes SM, Brown JR, Lako A, Ciantra ZB, Lawlor MA, Keskin DB, Udeshi ND, Wierda WG, Livak KJ, Letai AG, Neuberg D, Harper JW, Carr SA, Piccioni F, Ott CJ, Leshchiner I, Johannessen CM, Doench J, Mootha VK, Getz G, Wu CJ. 2019. Mitochondrial Reprogramming Underlies Resistance to BCL-2 Inhibition in Lymphoid Malignancies. Cancer Cell 36:369-384.e13. doi:10.1016/j.ccell.2019.08.005
Helling S, Hüttemann M, Ramzan R, Kim SH, Lee I, Müller T, Langenfeld E, Meyer HE, Kadenbach B, Vogt S, Marcus K. 2012. Multiple phosphorylations of cytochrome c oxidase and their functions. Proteomics 12:950–959. doi:10.1002/pmic.201100618
Inoue T, Swain A, Nakanishi Y, Sugiyama D. 2014. Multicolor analysis of cell surface marker of human leukemia cell lines using flow cytometryAnticancer Research.
Ivanusic D, Madela K, Denner J. 2017. Easy and cost-effective stable positioning of suspension cells during live-cell imaging. J Biol Methods 4:80. doi:10.14440/jbm.2017.203
Jitschin R, Hofmann AD, Bruns H, Gießl A, Bricks J, Berger J, Saul D, Eckart MJ, Mackensen A, Mougiakakos D. 2014. Mitochondrial metabolism contributes to oxidative stress and reveals therapeutic targets in chronic lymphocytic leukemia. Blood 123:2663–2672. doi:10.1182/blood-2013-10-532200
Kadenbach B. 2020. Complex IV– the regulatory center of mitochondrial oxidative phosphorylation. Mitochondrion. doi:10.1016/j.mito.2020.10.004
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. 2003. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410. doi:10.1038/nature01913
Kao L-P, Morad SAF, Davis TS, MacDougall MR, Kassai M, Abdelmageed N, Fox TE, Kester M, Loughran TP, Abad JL, Fabrias G, Tan S-F, Feith DJ, Claxton DF, Spiegel S, Fisher-Wellman KH, Cabot MC. 2019. Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells. J Lipid Res 60. doi:10.1194/jlr.RA119000251
Kao LP, Morad SAF, Davis TS, MacDougall MR, Kassai M, Abdelmageed N, Fox TE, Kester M, Loughran TP, Abad JL, Fabrias G, Tan SF, Feith DJ, Claxton DF, Spiegel S, Fisher-Wellman KH, Cabot MC. 2019. Chemotherapy selection pressure alters sphingolipid composition and mitochondrial bioenergetics in resistant HL-60 cells. J Lipid Res. doi:10.1194/jlr.RA119000251
Kim Darong, Kim SY, Kim Dongyoung, Yoon NG, Yun J, Hong KB, Lee C, Lee JH, Kang BH, Kang S. 2020. Development of pyrazolo[3,4-d]pyrimidine-6-amine-based TRAP1 inhibitors that demonstrate in vivo anticancer activity in mouse xenograft models. Bioorg Chem 101:103901. doi:10.1016/j.bioorg.2020.103901
Kuntz EM, Baquero P, Michie AM, Dunn K, Tardito S, Holyoake TL, Helgason GV, Gottlieb E. 2017. Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nat Med 23:1234–1240. doi:10.1038/nm.4399
Lagadinou ED, Sach A, Callahan K, Rossi RM, Neering SJ, Minhajuddin M, Ashton JM, Pei S, Grose V, O’Dwyer KM, Liesveld JL, Brookes PS, Becker MW, Jordan CT. 2013. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341. doi:10.1016/j.stem.2012.12.013
Laquatra C, Sanchez-Martin C, Dinarello A, Cannino G, Minervini G, Moroni E, Schiavone M, Tosatto S, Argenton F, Colombo G, Bernardi P, Masgras I, Rasola A. 2021. HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia. Cell Death Dis 12:434. doi:10.1038/s41419-021-03716-6
Lark DS, Torres MJ, Lin C Te, Ryan TE, Anderson EJ, Neufer PD. 2016. Direct real-time quantification of mitochondrial oxidative phosphorylation efficiency in permeabilized skeletal muscle myofibers. Am J Physiol - Cell Physiol. doi:10.1152/ajpcell.00124.2016
Lee CH, Kim MJ, Lee HH, Paeng JC, Park YJ, Oh SW, Chai YJ, Kim YA, Cheon GJ, Kang KW, Youn H, Chung JK. 2019. Adenine Nucleotide Translocase 2 as an Enzyme Related to [18F] FDG Accumulation in Various Cancers. Mol Imaging Biol 21:722–730. doi:10.1007/s11307-018-1268-x
Lee D, Xu IMJ, Chiu DKC, Lai RKH, Tse APW, Li LL, Law CT, Tsang FHC, Wei LL, Chan CYK, Wong CM, Ng IOL, Wong CCL. 2017. Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. J Clin Invest. doi:10.1172/JCI90253
Lee EA, Angka L, Rota SG, Hanlon T, Mitchell A, Hurren R, Wang XM, Gronda M, Boyaci E, Bojko B, Minden M, Sriskanthadevan S, Datti A, Wrana JL, Edginton A, Pawliszyn J, Joseph JW, Quadrilatero J, Schimmer AD, Spagnuolo PA. 2015. Targeting mitochondria with avocatin B induces selective leukemia cell death. Cancer Res 75:2478–2488. doi:10.1158/0008-5472.CAN-14-2676
Li XT, Li YS, Shi ZY, Guo XL. 2020. New insights into molecular chaperone TRAP1 as a feasible target for future cancer treatments. Life Sci 254:117737. doi:10.1016/j.lfs.2020.117737
Liu F, Kalpage HA, Wang D, Edwards H, Hüttemann M, Ma J, Su Y, Carter J, Li X, Polin L, Kushner J, Dzinic SH, White K, Wang G, Taub JW, Ge Y. 2020. Cotargeting of mitochondrial complex i and bcl-2 shows antileukemic activity against acute myeloid leukemia cells reliant on oxidative phosphorylation. Cancers (Basel) 12:1–19. doi:10.3390/cancers12092400
Luengo A, Li Z, Gui D, Sullivan L, Zagorulya M, Do B, Ferreira R, Naamati A, Ali A, Lewis C, Thomas C, Spranger S, Matheson N, Vander Heiden M. 2020. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell 1–17. doi:10.1101/2020.06.08.140558
Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA, Colucci WS. 2018. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol 116:106–114. doi:10.1016/j.yjmcc.2018.01.017
Maldonado EN, DeHart DN, Patnaik J, Klatt SC, Gooz MB, Lemasters JJ. 2016. ATP/ADP turnover and import of glycolytic ATP into mitochondria in cancer cells is independent of the adenine nucleotide translocator. J Biol Chem 291:19642–19650. doi:10.1074/jbc.M116.734814
Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, Steinert EM, Piseaux R, Budinger GRS, Chandel NS. 2020. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. doi:10.1038/s41586-020-2475-6
McLaughlin KL, Kew KA, McClung JM, Fisher-Wellman KH. 2020. Subcellular proteomics combined with bioenergetic phenotyping reveals protein biomarkers of respiratory insufficiency in the setting of proofreading-deficient mitochondrial polymerase. Sci Rep. doi:10.1038/s41598-020-60536-y
McLaughlin KL, McClung JM, Fisher-Wellman KH. 2018. Bioenergetic consequences of compromised mitochondrial DNA repair in the mouse heart. Biochem Biophys Res Commun 3–9. doi:10.1016/j.bbrc.2018.09.022
Messer JI, Jackman MR, Willis WT. 2004. Pyruvate and citric acid cycle carbon requirements in isolated skeletal muscle mitochondria. Am J Physiol Cell Physiol 286:C565-572. doi:10.1152/ajpcell.00146.2003
Mirali S, Botham A, Voisin V, Xu C, St-Germain J, Sharon D, Hoff FW, Qiu Y, Hurren R, Gronda M, Jitkova Y, Nachmias B, MacLean N, Wang X, Arruda A, Minden MD, Horton TM, Kornblau SM, Chan SM, Bader GD, Raught B, Schimmer AD. 2020. The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Sci Transl Med 12:1–17. doi:10.1126/scitranslmed.aaz8264
Mrózek K, Tanner SM, Heinonen K, Bloomfield CD. 2003. Molecular cytogenetic characterization of the KG-1 and KG-1a acute myeloid leukemia cell lines by use of spectral karyotyping and fluorescence in situ hybridization. Genes Chromosom Cancer 38:249–252. doi:10.1002/gcc.10274
Naugler C, Lesack K. 2011. An open-source software program for performing Bonferroni and related corrections for multiple comparisons. J Pathol Inform. doi:10.4103/2153-3539.91130
Okuda S, Watanabe Y, Moriya Y, Kawano S, Yamamoto T, Matsumoto M, Takami T, Kobayashi D, Araki N, Yoshizawa AC, Tabata T, Sugiyama N, Goto S, Ishihama Y. 2017. JPOSTrepo: An international standard data repository for proteomes. Nucleic Acids Res. doi:10.1093/nar/gkw1080
Panina SB, Pei J, Baran N, Konopleva M, Kirienko N V. 2020. Utilizing Synergistic Potential of Mitochondria-Targeting Drugs for Leukemia Therapy. Front Oncol 10. doi:10.3389/fonc.2020.00435
Rai Y, Yadav P, Kumari N, Kalra N, Bhatt AN. 2019. Hexokinase II inhibition by 3-bromopyruvate sensitizes myeloid leukemic cells K-562 to anti-leukemic drug, daunorubicin. Biosci Rep. doi:10.1042/bsr20190880
Ramkumar B, Dharaskar SP, Mounika G, Paithankar K, Sreedhar AS. 2020. Mitochondrial chaperone, TRAP1 as a potential pharmacological target to combat cancer metabolism. Mitochondrion 50:42–50. doi:10.1016/j.mito.2019.09.011
Roca-Portoles A, Rodriguez-Blanco G, Sumpton D, Cloix C, Mullin M, Mackay GM, O’Neill K, Lemgruber L, Luo X, Tait SWG. 2020. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death Dis 11. doi:10.1038/s41419-020-02867-2
Roth K, Weiner MW. 1991. Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with 31P NMR spectroscopy. Magn Reson Med. doi:10.1002/mrm.1910220258
Rücker FG, Sander S, Döhner K, Döhner H, Pollack JR, Bullinger L. 2006. Molecular profiling reveals myeloid leukemia cell lines to be faithful model systems characterized by distinct genomic aberrations. Leukemia. doi:10.1038/sj.leu.2404235
Ryan TE, Yamaguchi DJ, Schmidt CA, Zeczycki TN, Shaikh SR, Brophy P, Green TD, Tarpey MD, Karnekar R, Goldberg EJ, Sparagna GC, Torres MJ, Annex BH, Neufer PD, Spangenburg EE, McClung JM. 2018. Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants. JCI insight. doi:10.1172/jci.insight.123235
Ryu I, Ryu MJ, Han J, Kim SJ, Lee MJ, Ju X, Yoo BH, Lee YL, Jang Y, Song IC, Chung W, Oh E, Heo JY, Kweon GR. 2018. L-Deprenyl exerts cytotoxicity towards acute myeloid leukemia through inhibition of mitochondrial respiration. Oncol Rep 40:3869–3878. doi:10.3892/or.2018.6753
Sanchez-Martin C, Menon D, Moroni E, Ferraro M, Masgras I, Elsey J, Arbiser JL, Colombo G, Rasola A. 2020a. Honokiol Bis-Dichloroacetate Is a Selective Allosteric Inhibitor of the Mitochondrial Chaperone TRAP1. Antioxid Redox Signal 00:1–13. doi:10.1089/ars.2019.7972
Sanchez-Martin C, Moroni E, Ferraro M, Laquatra C, Cannino G, Masgras I, Negro A, Quadrelli P, Rasola A, Colombo G. 2020b. Rational Design of Allosteric and Selective Inhibitors of the Molecular Chaperone TRAP1. Cell Rep 31:107531. doi:10.1016/j.celrep.2020.107531
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: An open-source platform for biological-image analysis. Nat Methods. doi:10.1038/nmeth.2019
Sciacovelli M, Guzzo G, Morello V, Frezza C, Zheng L, Nannini N, Calabrese F, Laudiero G, Esposito F, Landriscina M, Defilippi P, Bernardi P, Rasola A. 2013. The mitochondrial chaperone TRAP1 promotes neoplastic growth by inhibiting succinate dehydrogenase. Cell Metab 17:988–999. doi:10.1016/j.cmet.2013.04.019
Singh RP, Jeyaraju D V., Voisin V, Hurren R, Xu C, Hawley JR, Barghout SH, Khan DH, Gronda M, Wang X, Jitkova Y, Sharon D, Liyanagae S, MacLean N, Seneviratene AK, Mirali S, Borenstein A, Thomas GE, Soriano J, Orouji E, Minden MD, Arruda A, Chan SM, Bader GD, Lupien M, Schimmer AD. 2020. Disrupting Mitochondrial Copper Distribution Inhibits Leukemic Stem Cell Self-Renewal. Cell Stem Cell 26:926-937.e10. doi:10.1016/j.stem.2020.04.010
Škrtić M, Sriskanthadevan S, Jhas B, Gebbia M, Wang X, Wang Z, Hurren R, Jitkova Y, Gronda M, Maclean N, Lai CK, Eberhard Y, Bartoszko J, Spagnuolo P, Rutledge AC, Datti A, Ketela T, Moffat J, Robinson BH, Cameron JH, Wrana J, Eaves CJ, Minden MD, Wang JCY, Dick JE, Humphries K, Nislow C, Giaever G, Schimmer AD. 2011. Inhibition of Mitochondrial Translation as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell 20:674–688. doi:10.1016/j.ccr.2011.10.015
Sriskanthadevan S, Jeyaraju D V., Chung TE, Prabha S, Xu W, Skrtic M, Jhas B, Hurren R, Gronda M, Wang X, Jitkova Y, Sukhai MA, Lin FH, Maclean N, Laister R, Goard CA, Mullen PJ, Xie S, Penn LZ, Rogers IM, Dick JE, Minden MD, Schimmer AD. 2015. AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress. Blood 125:2120–2130. doi:10.1182/blood-2014-08-594408
Suganuma K, Miwa H, Imai N, Shikami M, Gotou M, Goto M, Mizuno S, Takahashi M, Yamamoto H, Hiramatsu A, Wakabayashi M, Watarai M, Hanamura I, Imamura A, Mihara H, Nitta M. 2010. Energy metabolism of leukemia cells: Glycolysis versus oxidative phosphorylation. Leuk Lymphoma 51:2112–2119. doi:10.3109/10428194.2010.512966
Tewari D, Ahmed T, Chirasani VR, Singh PK, Maji SK, Senapati S, Bera AK. 2015. Modulation of the mitochondrial voltage dependent anion channel (VDAC) by curcumin. Biochim Biophys Acta - Biomembr 1848:151–158. doi:10.1016/j.bbamem.2014.10.014
Vardhana SA, Hwee MA, Berisa M, Wells DK, Yost KE, King B, Smith M, Herrera PS, Chang HY, Satpathy AT, van den Brink MRM, Cross JR, Thompson CB. 2020. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat Immunol. doi:10.1038/s41590-020-0725-2
Veech RL, Kashiwaya Y, Gates DN, King MT, Clarke K. 2002. The energetics of ion distribution: The origin of the resting electric potential of cells. IUBMB Life 54:241–252. doi:10.1080/15216540215678
Willis WT, Jackman MR, Messer JI, Kuzmiak-Glancy S, Glancy B. 2016. A simple hydraulic analog model of oxidative phosphorylation. Med Sci Sports Exerc. doi:10.1249/MSS.0000000000000884
Xiang W, Cheong JK, Ang SH, Teo B, Xu P, Asari K, Sun WT, Than H, Bunte RM, Virshup DM, Chuah C. 2015. Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration. Oncotarget. doi:10.18632/oncotarget.5615
Xie Q, Wondergem R, Shen Y, Cavey G, Ke J, Thompson R, Bradley R, Daugherty-Holtrop J, Xu Y, Chen E, Omar H, Rosen N, Wenkert D, Xu HE, Vande Woud GF. 2011. Benzoquinone ansamycin 17AAG binds to mitochondrial voltage-dependent anion channel and inhibits cell invasion. Proc Natl Acad Sci U S A 108:4105–4110. doi:10.1073/pnas.1015181108
Yoshida S, Tsutsumi S, Muhlebach G, Sourbier C, Lee MJ, Lee S, Vartholomaiou E, Tatokoro M, Beebe K, Miyajima N, Mohney RP, Chen Y, Hasumi H, Xu W, Fukushima H, Nakamura K, Koga F, Kihara K, Trepel J, Picard D, Neckers L. 2013. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci U S A 110. doi:10.1073/pnas.1220659110