1. Bettica, P. et al. Histological effects of givinostat in boys with Duchenne muscular dystrophy. Neuromuscul Disord 26, 643-649 (2016).
2. Marks, P.A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25, 84-90 (2007).
3. Li, Y. & Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med 6 (2016).
4. Hayashi, A. et al. Type-specific roles of histone deacetylase (HDAC) overexpression in ovarian carcinoma: HDAC1 enhances cell proliferation and HDAC3 stimulates cell migration with downregulation of E-cadherin. Int J Cancer 127, 1332-1346 (2010).
5. Guo, W. et al. HDAC6 inhibition reverses axonal transport defects in motor neurons derived from FUS-ALS patients. Nat Commun 8, 861 (2017).
6. Saito, M. et al. Acetylation of intrinsically disordered regions regulates phase separation. Nat Chem Biol 15, 51-61 (2019).
7. Federspiel, J.D., Greco, T.M., Lum, K.K. & Cristea, I.M. Hdac4 Interactions in Huntington's Disease Viewed Through the Prism of Multiomics. Mol Cell Proteomics 18, S92-S113 (2019).
8. Mielcarek, M. et al. HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11, e1001717 (2013).
9. Chang, L., Ruiz, P., Ito, T. & Sellers, W.R. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 39, 466-479 (2021).
10. Subramanian, S., Bates, S.E., Wright, J.J., Espinoza-Delgado, I. & Piekarz, R.L. Clinical Toxicities of Histone Deacetylase Inhibitors. Pharmaceuticals (Basel) 3, 2751-2767 (2010).
11. Balasubramanian, S., Verner, E. & Buggy, J.J. Isoform-specific histone deacetylase inhibitors: the next step? Cancer Lett 280, 211-221 (2009).
12. Bardai, F.H. & D'Mello, S.R. Selective toxicity by HDAC3 in neurons: regulation by Akt and GSK3beta. J Neurosci 31, 1746-1751 (2011).
13. Zhang, X. et al. Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev 19, 827-839 (2005).
14. Millard, C.J. et al. Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol Cell 51, 57-67 (2013).
15. Watson, P.J. et al. Insights into the activation mechanism of class I HDAC complexes by inositol phosphates. Nat Commun 7, 11262 (2016).
16. Guenther, M.G., Barak, O. & Lazar, M.A. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol 21, 6091-6101 (2001).
17. Bantscheff, M. et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 29, 255-265 (2011).
18. Becher, I. et al. Chemoproteomics reveals time-dependent binding of histone deacetylase inhibitors to endogenous repressor complexes. ACS Chem Biol 9, 1736-1746 (2014).
19. Turnbull, R.E. et al. The MiDAC histone deacetylase complex is essential for embryonic development and has a unique multivalent structure. Nat Commun 11, 3252 (2020).
20. Weigt, D., Hopf, C. & Medard, G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin Epigenetics 8, 76 (2016).
21. Hu, T. et al. HDAC5 catalytic activity suppresses cardiomyocyte oxidative stress and NRF2 target gene expression. J Biol Chem 294, 8640-8652 (2019).
22. Kikuchi, S. et al. Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma. Leukemia 29, 1918-1927 (2015).
23. Malgapo, M.I.P., Safadi, J.M. & Linder, M.E. Metallo-beta-lactamase domain-containing protein 2 is S-palmitoylated and exhibits acyl-CoA hydrolase activity. J Biol Chem 296, 100106 (2020).
24. Robers, M.B. et al. Target engagement and drug residence time can be observed in living cells with BRET. Nat Commun 6, 10091 (2015).
25. Bradner, J.E. et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6, 238-243 (2010).
26. Becher, I. et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat. Nat Chem Biol 12, 908-910 (2016).
27. Samaras, P. et al. ProteomicsDB: a multi-omics and multi-organism resource for life science research. Nucleic Acids Res 48, D1153-D1163 (2020).
28. Schmidt, T. et al. ProteomicsDB. Nucleic Acids Res 46, D1271-D1281 (2018).
29. Wilhelm, M. et al. Mass-spectrometry-based draft of the human proteome. Nature 509, 582-587 (2014).
30. Heinzlmeir, S. et al. Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors. ChemMedChem 12, 999-1011 (2017).
31. Balasubramanian, S. et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22, 1026-1034 (2008).
32. Heimburg, T. et al. Structure-Based Design and Synthesis of Novel Inhibitors Targeting HDAC8 from Schistosoma mansoni for the Treatment of Schistosomiasis. J Med Chem 59, 2423-2435 (2016).
33. Heimburg, T. et al. Structure-Based Design and Biological Characterization of Selective Histone Deacetylase 8 (HDAC8) Inhibitors with Anti-Neuroblastoma Activity. J Med Chem 60, 10188-10204 (2017).
34. Butler, K.V. et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 132, 10842-10846 (2010).
35. Shen, S. et al. Structural and in Vivo Characterization of Tubastatin A, a Widely Used Histone Deacetylase 6 Inhibitor. ACS Med Chem Lett 11, 706-712 (2020).
36. Geraldy, M. et al. Selective Inhibition of Histone Deacetylase 10: Hydrogen Bonding to the Gatekeeper Residue is Implicated. J Med Chem 62, 4426-4443 (2019).
37. Buggy, J.J. et al. CRA-024781: a novel synthetic inhibitor of histone deacetylase enzymes with antitumor activity in vitro and in vivo. Mol Cancer Ther 5, 1309-1317 (2006).
38. Bergman, J.A. et al. Selective histone deacetylase 6 inhibitors bearing substituted urea linkers inhibit melanoma cell growth. J Med Chem 55, 9891-9899 (2012).
39. Millard, C.J., Watson, P.J., Fairall, L. & Schwabe, J.W.R. Targeting Class I Histone Deacetylases in a "Complex" Environment. Trends Pharmacol Sci 38, 363-377 (2017).
40. Runkle, K.B. et al. Inhibition of DHHC20-Mediated EGFR Palmitoylation Creates a Dependence on EGFR Signaling. Mol Cell 62, 385-396 (2016).
41. Huttlin, E.L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022-3040 e3028 (2021).
42. Huttlin, E.L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505-509 (2017).
43. Huttlin, E.L. et al. The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell 162, 425-440 (2015).
44. Kustatscher, G. et al. Co-regulation map of the human proteome enables identification of protein functions. Nat Biotechnol 37, 1361-1371 (2019).
45. Chao, O.S. et al. The HDAC6 Inhibitor Tubacin Induces Release of CD133(+) Extracellular Vesicles From Cancer Cells. J Cell Biochem 118, 4414-4424 (2017).
46. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244-1247 (2008).
47. Lobera, M. et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol 9, 319-325 (2013).
48. Albrow, V.E. et al. Design and development of histone deacetylase (HDAC) chemical probes for cell-based profiling. Mol Biosyst 12, 1781-1789 (2016).
49. Fischer, J.J. et al. SAHA Capture Compound--a novel tool for the profiling of histone deacetylases and the identification of additional vorinostat binders. Proteomics 11, 4096-4104 (2011).
50. Burli, R.W. et al. Design, synthesis, and biological evaluation of potent and selective class IIa histone deacetylase (HDAC) inhibitors as a potential therapy for Huntington's disease. J Med Chem 56, 9934-9954 (2013).
51. Luckhurst, C.A. et al. Potent, Selective, and CNS-Penetrant Tetrasubstituted Cyclopropane Class IIa Histone Deacetylase (HDAC) Inhibitors. ACS Med Chem Lett 7, 34-39 (2016).
52. Kutil, Z. et al. Continuous Activity Assay for HDAC11 Enabling Reevaluation of HDAC Inhibitors. ACS Omega 4, 19895-19904 (2019).
53. Moreno-Yruela, C., Galleano, I., Madsen, A.S. & Olsen, C.A. Histone Deacetylase 11 Is an epsilon-N-Myristoyllysine Hydrolase. Cell Chem Biol 25, 849-856 e848 (2018).
54. Liu, S.S., Wu, F., Jin, Y.M., Chang, W.Q. & Xu, T.M. HDAC11: a rising star in epigenetics. Biomed Pharmacother 131, 110607 (2020).
55. Hailu, G.S. et al. Lysine Deacetylase Inhibitors in Parasites: Past, Present, and Future Perspectives. J Med Chem 60, 4780-4804 (2017).
56. Lin, A. et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 11 (2019).
57. Hai, Y., Shinsky, S.A., Porter, N.J. & Christianson, D.W. Histone deacetylase 10 structure and molecular function as a polyamine deacetylase. Nat Commun 8, 15368 (2017).
58. Arrowsmith, C.H. et al. The promise and peril of chemical probes. Nat Chem Biol 11, 536-541 (2015).
59. Fuller, N.O. et al. CoREST Complex-Selective Histone Deacetylase Inhibitors Show Prosynaptic Effects and an Improved Safety Profile To Enable Treatment of Synaptopathies. ACS Chem Neurosci 10, 1729-1743 (2019).
60. Reinecke, M. et al. Chemoproteomic Selectivity Profiling of PIKK and PI3K Kinase Inhibitors. ACS Chem Biol 14, 655-664 (2019).
61. Klaeger, S. et al. Chemical Proteomics Reveals Ferrochelatase as a Common Off-target of Kinase Inhibitors. ACS Chem Biol 11, 1245-1254 (2016).
62. Cheng, L., Zhao, Y., Tang, M., Luo, Z. & Wang, X. Knockdown of ISOC1 suppresses cell proliferation in pancreatic cancer in vitro. Oncol Lett 17, 4263-4270 (2019).
63. Gao, B. et al. Knockdown of ISOC1 inhibits the proliferation and migration and induces the apoptosis of colon cancer cells through the AKT/GSK-3beta pathway. Carcinogenesis 41, 1123-1133 (2020).
64. Xu, W., Xu, B., Yao, Y., Yu, X. & Shen, J. The novel HDAC inhibitor AR-42-induced anti-colon cancer cell activity is associated with ceramide production. Biochem Biophys Res Commun 463, 545-550 (2015).
65. Pettinati, I., Brem, J., Lee, S.Y., McHugh, P.J. & Schofield, C.J. The Chemical Biology of Human Metallo-beta-Lactamase Fold Proteins. Trends Biochem Sci 41, 338-355 (2016).
66. Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. & Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 279, 5298-5305 (2004).
67. Wang, J. et al. Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-beta-lactamase family. J Biol Chem 281, 12325-12335 (2006).
68. Margheritis, E. et al. Bile Acid Recognition by NAPE-PLD. ACS Chem Biol 11, 2908-2914 (2016).
69. Costa-Silva, B. et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 17, 816-826 (2015).
70. Peinado, H. et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18, 883-891 (2012).
71. Rodrigues, G. et al. Tumour exosomal CEMIP protein promotes cancer cell colonization in brain metastasis. Nat Cell Biol 21, 1403-1412 (2019).
72. Hoshino, D. et al. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5, 1159-1168 (2013).
73. Chen, G. et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560, 382-386 (2018).
74. Poggio, M. et al. Suppression of Exosomal PD-L1 Induces Systemic Anti-tumor Immunity and Memory. Cell 177, 414-427 e413 (2019).
75. Capello, M. et al. Exosomes harbor B cell targets in pancreatic adenocarcinoma and exert decoy function against complement-mediated cytotoxicity. Nat Commun 10, 254 (2019).
76. Montecalvo, A. et al. Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180, 3081-3090 (2008).
77. Andre, F. et al. Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360, 295-305 (2002).
78. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7, 297-303 (2001).
79. Walker, J.D., Maier, C.L. & Pober, J.S. Cytomegalovirus-infected human endothelial cells can stimulate allogeneic CD4+ memory T cells by releasing antigenic exosomes. J Immunol 182, 1548-1559 (2009).
80. Gold, W.A., Lacina, T.A., Cantrill, L.C. & Christodoulou, J. MeCP2 deficiency is associated with reduced levels of tubulin acetylation and can be restored using HDAC6 inhibitors. J Mol Med (Berl) 93, 63-72 (2015).
81. Benoy, V. et al. HDAC6 is a therapeutic target in mutant GARS-induced Charcot-Marie-Tooth disease. Brain 141, 673-687 (2018).
82. Brindisi, M. et al. Old but Gold: Tracking the New Guise of Histone Deacetylase 6 (HDAC6) Enzyme as a Biomarker and Therapeutic Target in Rare Diseases. J Med Chem 63, 23-39 (2020).
83. Mo, Z. et al. Aberrant GlyRS-HDAC6 interaction linked to axonal transport deficits in Charcot-Marie-Tooth neuropathy. Nat Commun 9, 1007 (2018).