1 Center for Disease Control and Prevention. National Diabetes Statistics Report. ( Atlanta, GA, 2020).
2 American Diaetes Association. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care 41, 917–928 (2018).
3 Davies, M. J. et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 41, 2669, doi:10.2337/dci18-0033 (2018).
4 Vashisht, R. et al. Association of Hemoglobin A1c Levels With Use of Sulfonylureas, Dipeptidyl Peptidase 4 Inhibitors, and Thiazolidinediones in Patients With Type 2 Diabetes Treated With Metformin: Analysis From the Observational Health Data Sciences and Informatics Initiative. JAMA Network Open 1, e181755-e181755, doi:10.1001/jamanetworkopen.2018.1755 (2018).
5 Association, A. D. Pharmacologic Approaches to Glycemic Treatment:Standards of Medical Care in Diabetes—2019. Diabetes Care 42, S90, doi:10.2337/dc19-S009 (2019).
6 Setji, T. L., Page, C. y., Pagidipati, N. & Goldstein, B. A. Differences in Achieving Hba1C Goals Among Patients Seen by Endocrinologists and Primary Care Providers. Endocrine Practice 25, 461-469, doi:https://doi.org/10.4158/EP-2018-0405 (2019).
7 Beaser, R. S. et al. Coordinated Primary and Specialty Care for Type 2 Diabetes Mellitus, Guidelines, and Systems: An Educational Needs Assessment. Endocrine Practice 17, 880-890, doi:https://doi.org/10.4158/EP10398.OR (2011).
8 Hripcsak, G. et al. Characterizing treatment pathways at scale using the OHDSI network. Proceedings of the National Academy of Sciences 113, 7329-7336, doi:10.1073/pnas.1510502113 (2016).
9 Kahn, S. E. et al. Glycemic Durability of Rosiglitazone, Metformin, or Glyburide Monotherapy. New England Journal of Medicine 355, 2427-2443, doi:10.1056/NEJMoa066224 (2006).
10 Rosenbaum, P. R. & Rubin, D. B. The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55 (1983).
11 Chalmers, T. C., Matta, R. J., Smith, H. & Kunzler, A.-M. Evidence Favoring the Use of Anticoagulants in the Hospital Phase of Acute Myocardial Infarction. New England Journal of Medicine 297, 1091-1096, doi:10.1056/nejm197711172972004 (1977).
12 Lumley, T. Network meta-analysis for indirect treatment comparisons. Statistics in Medicine 21, 2313-2324, doi:https://doi.org/10.1002/sim.1201 (2002).
13 Zhu, H. et al. Comparative efficacy of glimepiride and metformin in monotherapy of type 2 diabetes mellitus: meta-analysis of randomized controlled trials. Diabetology & Metabolic Syndrome 5, 70, doi:10.1186/1758-5996-5-70 (2013).
14 Mearns, E. S. et al. Comparative efficacy and safety of antidiabetic drug regimens added to metformin monotherapy in patients with type 2 diabetes: a network meta-analysis. PloS one 10, e0125879 (2015).
15 Ryan, P. B. et al. Comparative effectiveness of canagliflozin, SGLT2 inhibitors and non‐SGLT2 inhibitors on the risk of hospitalization for heart failure and amputation in patients with type 2 diabetes mellitus: a real‐world meta‐analysis of 4 observational databases (OBSERVE‐4D). Diabetes, Obesity and Metabolism 20, 2585-2597 (2018).
16 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436-444, doi:10.1038/nature14539 (2015).
17 Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115-118, doi:10.1038/nature21056 (2017).
18 Gulshan, V. et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 316, 2402-2410, doi:10.1001/jama.2016.17216 (2016).
19 Li, L. et al. Disease risk factors identified through shared genetic architecture and electronic medical records. Sci Transl Med 6, 234ra257-234ra257, doi:10.1126/scitranslmed.3007191 (2014).
20 Rajkomar, A. et al. Scalable and accurate deep learning with electronic health records. npj Digital Medicine 1, 18, doi:10.1038/s41746-018-0029-1 (2018).
21 Norgeot, B. et al. Assessment of a Deep Learning Model Based on Electronic Health Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis. JAMA Network Open 2, e190606-e190606, doi:10.1001/jamanetworkopen.2019.0606 (2019).
22 Noble, J., Baerlocher, M. O. & Silverberg, J. Management of type 2 diabetes mellitus. Role of thiazolidinediones. Can Fam Physician 51, 683-687 (2005).
23 Charlson, M. E., Pompei, P., Ales, K. L. & MacKenzie, C. R. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases 40, 373-383 (1987).
24 Rosenbaum, P. R. Model-based direct adjustment. Journal of the American Statistical Association 82, 387-394 (1987).
25 Dorie, V., Hill, J., Shalit, U., Scott, M. & Cervone, D. Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition. Statistical Science 34, 43-68 (2019).
26 Hill, J. L. Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics 20, 217-240 (2011).
27 Belthangady, C. S., Will; Norgeot, Beau. Minimizing Bias in Massive Multi-Arm Observational Studies with BCAUS: Balancing Covariates Automatically Using Supervision. Submitted (2021).