[1] Zheng CM, Chu YT, Xu LW et al (2016) Theoretical studies on a new furazan compound bis[4-nitr-amino-furazanyl-3-azoxy]azofurazan(ADNAAF)[J]. J Mol Model.22(6):1-9.
https://doi.org/10.1007/s00894-016-2995-z
[2] Leonov N E, Klenov M S, Anikin O V et al (2020) Synthesis of New Energetic Materials Based on Furazan Rings and Nitro-NNO-azoxy Groups[J]. Chemistryselect.5(39): 12243-12249.
https://doi.org/10.1002/slct.202003182
[3] Huang Y, Zhang Q, Zhan LW et al (2020) Theoretical investigation of nitrogen-rich high-energy-d-ensity materials based on furazan substituted s-triazine[J]. J Mol Model.26(7): 1-9.
https://doi.org/10.1007/s00894-020-04414-4
[4] Zheng W, Wang J, Ren X et al (2007) An investigation on thermal decomposition of DNTF-CMDB propellants [J]. Propellants Explosives Pyrotechnics.32(6):520-524.
https://doi.org/10.1002/prep.200700052
[5] Song L, Zhao FQ, Xu SY et al (2019) Molecular Modeling on Morphology of 3,4-Bis(3-nitrofuraz-
an-4-yl)furoxan Crystals in Dichloroethane or Benzene Mixture Solvents [J]. J Mol Model.25(12).
https://doi.org/10.1007/s00894-019-4260-8
[6] Bagge-Hansen M, Bastea S, Hammons J A et al (2019) Detonation synthesis of carbon nano-onions via liquid carbon condensation [J]. Nat Commun.10(1):1-8.
https://doi.org/10.1038/s41467-019-11666-z
[7] Kotomin AA, Kozlov AS, Dushenok SA (2007) Detonatability of high-energy-density heterocyclic compounds[J]. Russian Journal of Physical Chemistry B.1(6):573-575.
https://doi.org/10.1134/S1990793107060103
[8] Ren XN (2019) Invenstigation on the thermal activiation and interaction of new energy materials[D]. Xi’an: Northwest University.
[9] Sinditskii VP, Burzhava AV, Sheremetev AB et al (2012) Thermal and Combustion Properties of 3,4-Bis(3-nitrofurazan-4-yl)-furoxan (DNTF)[J]. Propellants Explosives Pyrotechnics.37(5):575-580.https://doi.org/10.1002/prep.201100095
[10] Li HQ, An CW, Du MY et al (2016) Study on Kinetic Parameters of Thermal Decomposition Rea-ction and Thermal Stability of 3,4-Bis(3-nitrofurazan-4-yl)furoxan Based on Kissinger Method[J]. Chinese Journal of Explosives & Propellants.39(3):58-60,65.
https://doi.org/10.14077/j.issn.1007-7812.2016.03.0011
[11] Gao J, Luo YM, Wang H et al (2019) Risk of Impurities on Thermal Decomposition of DNTF[J].
Initiators & Pyrotechnics.2019(3):47-50.
[12] Patidar L, Thynell ST (2017) Quantum mechanics investigation of initial reaction pathways and e-arly ring-opening reactions in thermal decomposition of liquid-phase RDX[J]. Combustion and Fl-ame. 178(4): 720. https://doi.org/10.1016/j.combustflame.2016.12.4
[13] Li J, Jin SH, Lan GC et al (2020) Reactive molecular dynamics simulations on the thermal decom-positions and oxidations of TKX-50 and twinned TKX-50[J]. Crystengcomm.22(15): 25932600.
https://doi.org/10.1039/D0CE00199F
[14] Wang N, Peng JH, Pang AM et al (2017) Thermodynamic Simulation of the RDX-Aluminum Inte-rface Using ReaxFF Molecular Dynamics[J]. J Phys Chem C.121(27):1459714610.
https://doi.org/10.1021/acs.jp-cc.7b03108
[15] Van Duin ACT, Dasgupta S, Lorant F, Goddard WA et al (2001) Reax FF:Areactive force field for hydrocarbons. Journal of Physical Chemistry A, 2001, 105(41): 9396–9409.
https://doi.org/10.1021/jp004368u
[16] Liu LC, Liu Y, Zybin SV et al (2011) ReaxFF-lg: correction of the ReaxFF reactive force field for London dispersion, with applications to the equations of state for energetic materials.[J]. J Phys C-hem A.115(40):1101611022. https://doi.org/10.1021/jp201599t
[17] Liu H, Dong X, He YH (2014) Reactive Molecular Dynamics Simulations of Carbon-Containing Clusters Formation during Pyrolysis of TNT[J]. Acta Physico-Chimica Sinica.2014(2):232-240
[18] Ren CX, Li XX, Guo L (2018) Reaction Mechanisms in the Thermal Decomposition of CL-20 Re-vealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica.34(10):1151-1162
[19] Wang FP, Chen L, Geng DS et al (2018) Thermal Decomposition Mechanism of CL-20 at Differe-nt Temperatures by ReaxFF Reactive Molecular Dynamics Simulations[J]. J Phys Chem A.122(16): 3971-3979. https://doi.org/10.1021/acs.jpca.8b01256
[20] Zhao Y, Zhao FQ, Xu SY et al (2020) Molecular reaction dynamics simulation of thermal decom-position for aluminiferous RDX composites[J]. Computational MaterialsScience.177(5).
https://doi.org/10.1016/j.commatsci.2020.109556
[21] Li CF, Mei Z, Zhao FQ et al (2018) Molecular dynamic simulation for thermal decomposition of RDX with nano-AlH3 particles[J]. Physical chemistry chemical physics:PCCP.20(20):14192-14199. https://doi.org/10.1039/c8cp01621f
[22] Wen YS, Xue XG, Long XP et al (2016) Cluster Evolution at Early Stages of 1,3,5-Triamino-2,4,6-trin-itrobenzene under Various Heating Conditions: A Molecular Reactive Force Field Study[J]. J Phys Chem A.120(22):3929-3937. https://doi.org/10.1021/acs.jpca.6b03795
[23] Xiang D, Zhu WH (2017) Thermal decomposition of isolated and crystal 4,10-dinitro-2,6,8,12-tet-raoxa-4,10-diazai-sowurtzitae according to ab initio molecular dynamics simulations[J]. Rsc Adv-ances.7(14):8347-8356.
[24] Wu Q, Zhu WH, Xiao HM (2014) An ab initio molecular dynamics study of thermal decompositi-on of 3,6-di(azido)-1,2,4,5-tetrazine [J]. Physical Chemistry Chemical Physics.16(39): 21620-21628. https://doi.org/10.1039/c4cp02579b
[25] Ye CC, An Q, Cheng T et al (2015) Reaction mechanism from quantum molecular dynamics for th-e initial thermal decomposition of 2,4,6-triamino-1,3,5-triazine-1,3,5-trioxide (MTO) and 2,4,6-t-rinitro-1,3,5-triazine-1,3,5-trioxide(MTO-3N), promising green energetic materials[J]. Journal of Materials Chemistry A.3(22):1204412050. https://doi.org/10.1039/C5TA02486B
[26] Hafner J (2018) Ab-initio simulations of materials using VASP: Density-functional theory and be-yond [J]. J Comput Chem.29(13): 2044-2078. https://doi.org/10.1002/jcc.21057
[27] Wang ZG, Chen J, Wen YH (2008) First-principles calculation of binding energy and lattice const-ant of Al single crystal[J]. Journal of Leshan Teachers College. 23(5): 30-31.
[28] Hafner J (2008) Ab-initio simulations of materials using VASP: Density-functional theory and be-yond [J]. J Comput Chem.29(13):2044-2078. https://doi.org/10.1002/jcc.21057
[29] Sheremetev AB, Ivanova EA, Spiridonova NP et al (2005) Desilylative nitration of C,N-disilylate-d-3-amino-4-methyl-furazan[J]. Journal of Heterocyclic Chemistry.42(6):12371242.
https://doi.org/10.1002/jhet.5570420634