[1] H.W. Schock, R. Noufi, CIGS‐based solar cells for the next millennium, Prog. Photovoltaics Res. Appl., 8 (2000) 151-160.
[2] B. Dimmler, H. Schock, Scaling‐up of CIS technology for thin‐film solar modules, Prog. Photovoltaics Res. Appl., 4 (1996) 425-433.
[3] W. Devaney, W. Chen, J. Stewart, R. Mickelsen, Structure and properties of high efficiency ZnO/CdZnS/CuInGaSe/sub 2/solar cells, IEEE Trans. Electron Devices, 37 (1990) 428-433.
[4] M. Nakamura, K. Yamaguchi, Y. Kimoto, Y. Yasaki, T. Kato, H. Sugimoto, Cd-free Cu (In, Ga)(Se, S) 2 thin-film solar cell with record efficiency of 23.35%, IEEE J. Photovoltaics, 9 (2019) 1863-1867.
[5] S. Siebentritt, Alternative buffers for chalcopyrite solar cells, Sol. Energy, 77 (2004) 767-775.
[6] W. Witte, S. Spiering, D. Hariskos, Substitution of the CdS buffer layer in CIGS thin‐film solar cells: Status of current research and record cell efficiencies, Vak. Forsch. Prax., 26 (2014) 23-27.
[7] T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, M. Kitagawa, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells, 67 (2001) 83-88.
[8] Y. Hamri, Y. Bourezig, M. Medles, M. Ameri, K. Toumi, I. Ameri, Y. Al-Douri, C.H. Voon, Improved efficiency of Cu (In, Ga) Se2 thinfilm solar cells using a buffer layer alternative to CdS, Sol. Energy, 178 (2019) 150-156.
[9] S. Sharbati, J.R. Sites, Impact of the Band Offset for n-Zn (O, S)/p-Cu (In, Ga) Se $ _ {2} $ Solar Cells, IEEE J. Photovoltaics, 4 (2014) 697-702.
[10] M. Nguyen, K. Ernits, K.F. Tai, C.F. Ng, S.S. Pramana, W.A. Sasangka, S.K. Batabyal, T. Holopainen, D. Meissner, A. Neisser, ZnS buffer layer for Cu2ZnSn (SSe) 4 monograin layer solar cell, Sol. Energy, 111 (2015) 344-349.
[11] L.Y. Chen, C. Fang, X.Q. Chen, Calculation of complexion in chemical precursor for ZnSe as buffer-window layer of CIGS solar cell, in: Advanced Materials Research, Trans Tech Publ, 2015, pp. 604-607.
[12] P. Singh, R. Gautam, S. Sharma, S. Kumari, A. Verma, Simulated solar cell device of CuGaSe2 by using CdS, ZnS and ZnSe buffer layers, Mater. Sci. Semicond. Process., 42 (2016) 288-302.
[13] C. Calderón, J. Oyola, P. Bartolo-Pérez, G. Gordillo, Studies in CuInS2 based solar cells, including ZnS and In2S3 buffer layers, Mater. Sci. Semicond. Process., 16 (2013) 1382-1387.
[14] S. Ummartyotin, Y. Infahsaeng, A comprehensive review on ZnS: From synthesis to an approach on solar cell, Renewable Sustainable Energy Rev., 55 (2016) 17-24.
[15] A. Strohm, L. Eisenmann, R. Gebhardt, A. Harding, T. Schlötzer, D. Abou-Ras, H. Schock, ZnO/InxSy/Cu (In, Ga) Se2 solar cells fabricated by coherent heterojunction formation, Thin Solid Films, 480 (2005) 162-167.
[16] N. Naghavi, S. Spiering, M. Powalla, B. Cavana, D. Lincot, High‐efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD), Prog. Photovoltaics Res. Appl., 11 (2003) 437-443.
[17] D. Hariskos, S. Spiering, M. Powalla, Buffer layers in Cu (In, Ga) Se2 solar cells and modules, Thin Solid Films, 480 (2005) 99-109.
[18] Z.Y. Zhong, E.S. Cho, S.J. Kwon, Effect of substrate temperatures on evaporated In2S3 thin film buffer layers for Cu (In, Ga) Se2 solar cells, Thin Solid Films, 547 (2013) 22-27.
[19] D. Hauschild, F. Meyer, A. Benkert, D. Kreikemeyer-Lorenzo, S. Pohlner, J. Palm, M. Blum, W. Yang, R. Wilks, M. Bär, Annealing-induced effects on the chemical structure of the In2S3/CuIn (S, Se) 2 thin-film solar cell interface, The Journal of Physical Chemistry C, 119 (2015) 10412-10416.
[20] K. Kim, L. Larina, J.H. Yun, K.H. Yoon, H. Kwon, B.T. Ahn, Cd-free CIGS solar cells with buffer layer based on the In 2 S 3 derivatives, Physical Chemistry Chemical Physics, 15 (2013) 9239-9244.
[21] A. Timoumi, H. Bouzouita, M. Kanzari, B. Rezig, Fabrication and characterization of In2S3 thin films deposited by thermal evaporation technique, Thin Solid Films, 480 (2005) 124-128.
[22] E. Yousfi, B. Weinberger, F. Donsanti, P. Cowache, D. Lincot, Atomic layer deposition of zinc oxide and indium sulfide layers for Cu (In, Ga) Se2 thin-film solar cells, Thin Solid Films, 387 (2001) 29-32.
[23] N. Barreau, J. Bernede, S. Marsillac, C. Amory, W. Shafarman, New Cd-free buffer layer deposited by PVD: In2S3 containing Na compounds, Thin Solid Films, 431 (2003) 326-329.
[24] N. Allsop, A. Schönmann, H.J. Muffler, M. Bär, M.C. Lux‐Steiner, C.H. Fischer, Spray‐ILGAR indium sulfide buffers for Cu (In, Ga)(S, Se) 2 solar cells, Prog. Photovoltaics Res. Appl., 13 (2005) 607-616.
[25] D.M. Hariskos, R.; Spiering, S.; Eicke, A.; Powalla, M.; Ellmer, K.; Oertel, M.; Dimmler, B. , Bffer Layer Deposited by Magnetron Sputtering for Cu(InGa)Se2 Solar Cells, in: Proceedings of the 19th European Photovoltaic Solar Energy Conference, Paris, France, 2004, pp. 1894−1897.
[26] S. Spiering, A. Nowitzki, F. Kessler, M. Igalson, H.A. Maksoud, Optimization of buffer-window layer system for CIGS thin film devices with indium sulphide buffer by in-line evaporation, Sol. Energy Mater. Sol. Cells, 144 (2016) 544-550.
[27] T. Kato, J.-L. Wu, Y. Hirai, H. Sugimoto, V. Bermudez, Record efficiency for thin-film polycrystalline solar cells up to 22.9% achieved by Cs-treated Cu (In, Ga)(Se, S) 2, IEEE J. Photovoltaics, 9 (2018) 325-330.
[28] P. Chelvanathan, M.I. Hossain, N. Amin, Performance analysis of copper–indium–gallium–diselenide (CIGS) solar cells with various buffer layers by SCAPS, Curr. Appl Phys., 10 (2010) S387-S391.
[29] A. Bouloufa, K. Djessas, A. Zegadi, Numerical simulation of CuInxGa1− xSe2 solar cells by AMPS-1D, Thin Solid Films, 515 (2007) 6285-6287.
[30] N. Khoshsirat, N.A.M. Yunus, Numerical Analysis of In 2 S 3 Layer Thickness, Band Gap and Doping Density for Effective Performance of a CIGS Solar Cell Using SCAPS, J. Electron. Mater., 45 (2016) 5721-5727.
[31] M.I. Hossain, P. Chelvanathan, M. Zaman, M. Karim, M. Alghoul, N. Amin, Prospects of indium sulphide as an alternative to cadmium sulphide buffer layer in CIS based solar cells from numerical analysis, Chalcogenide Lett, 8 (2011) 315-324.
[32] H.J. SUN Lin, Simulation of In2S3 /Cu(In,Ga)Se2 thin-film solar cells with the interfacial layer, http://en.paper.edu.cn/en_releasepaper/content/4574618
(2013).
[33] M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells, Thin Solid Films, 361 (2000) 527-532.
[34] M. Burgelman, J. Verschraegen, S. Degrave, P. Nollet, Modeling thin‐film PV devices, Prog. Photovoltaics Res. Appl., 12 (2004) 143-153.
[35] N. Naghavi, R. Henriquez, V. Laptev, D. Lincot, Growth studies and characterisation of In2S3 thin films deposited by atomic layer deposition (ALD), Appl. Surf. Sci., 222 (2004) 65-73.
[36] F. Donsanti, B. Weinberger, P. Cowache, M. Bernard, D. Lincot, Atomic layer deposition of indium sulfide layers for copper indium gallium diselenide solar cells, MRS Online Proceedings Library Archive, 668 (2001).
[37] N. Barreau, J. Bernede, C. Deudon, L. Brohan, S. Marsillac, Study of the new β-In2S3 containing Na thin films Part I: Synthesis and structural characterization of the material, J. Cryst. Growth, 241 (2002) 4-14.
[38] N. Barreau, J. Bernede, S. Marsillac, Study of the new β-In2S3 containing Na thin films. Part II: Optical and electrical characterization of thin films, J. Cryst. Growth, 241 (2002) 51-56.
[39] N. Barreau, J. Bernede, S. Marsillac, A. Mokrani, Study of low temperature elaborated tailored optical band gap β-In2S3− 3xO3x thin films, J. Cryst. Growth, 235 (2002) 439-449.
[40] N. Barreau, C. Deudon, A. Lafond, S. Gall, J. Kessler, A study of bulk NaxCu1− xIn5S8 and its impact on the Cu (In, Ga) Se2/In2S3 interface of solar cells, Sol. Energy Mater. Sol. Cells, 90 (2006) 1840-1848.
[41] M. Saadat, O. Amiri, A. Rahdar, Optimization of (Zn, Sn) O buffer layer in Cu (In, Ga) Se2 based solar cells, Sol. Energy, 189 (2019) 464-470.
[42] M. Saadat, M. Moradi, M. Zahedifar, Optimization of Zn (O, S)/(Zn, Mg) O buffer layer in Cu (In, Ga) Se 2 based photovoltaic cells, J. Mater. Sci.: Mater. Electron., 27 (2016) 1130-1133.
[43] M. Topič, F. Smole, J. Furlan, Band‐gap engineering in CdS/Cu (In, Ga) Se2 solar cells, J. Appl. Phys., 79 (1996) 8537-8540.
[44] S. Azizi, H.R. Dizaji, M. Ehsani, Structural and optical properties of Cd1-xZnxS (x= 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes, Optik, 127 (2016) 7104-7114.
[45] M. Troviano, K. Taretto, Temperature-dependent quantum efficiency analysis of graded-gap Cu (In, Ga) Se2 solar cells, Sol. Energy Mater. Sol. Cells, 95 (2011) 3081-3086.
[46] J. Song, S.S. Li, C. Huang, O. Crisalle, T. Anderson, Device modeling and simulation of the performance of Cu (In1− x, Gax) Se2 solar cells, Solid-State Electron., 48 (2004) 73-79.
[47] T.J. Huang, X. Yin, G. Qi, H. Gong, CZTS‐based materials and interfaces and their effects on the performance of thin film solar cells, physica status solidi (RRL)–Rapid Research Letters, 8 (2014) 735-762.
[48] T. Minemoto, J. Julayhi, Buffer-less Cu (In, Ga) Se2 solar cells by band offset control using novel transparent electrode, Curr. Appl Phys., 13 (2013) 103-106.
[49] M.A. Green, Accuracy of analytical expressions for solar cell fill factors, Solar Cells, 7 (1982) 337-340.