1. Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).
2. Peng, Q. Ma, H. & Shuai, Z. G. Theory of long-lived room-temperature phosphorescence in organic aggregates. Acc. Chem. Res. 54, 940−949 (2021).
3. Kabe, R., Adachi, C. Organic long persistent luminescence. Nature 550, 384–387 (2017).
4. Gu, L., Shi, H., Bian, L. et al. Colour-tunable ultra-long organic phosphorescence of a single-component molecular crystal. Nat. Photonics 13, 406–411 (2019).
5. An, Z., Zheng, C., Tao, Y. et al. Stabilizing triplet excited states for ultralong organic phosphorescence. Nat. Mater. 14, 685–690 (2015).
6. Wang, X., Shi, H., Ma, H. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 15, 187–192 (2021).
7. Bolton, O., Lee, K., Kim, H-J. et al. Activating efficient phosphorescence from purely organic materials by crystal design. Nat. Chem. 3, 205–210 (2011).
8. Wang, J., Gu, X., Ma, H. et al. A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nat. Commun. 9, 2963 (2018).
9. Zhang, Y., Gao, L., Zheng, X. et al. Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems. Nat. Commun. 12, 2297 (2021).
10. Bian, L., Shi, H. et al. Simultaneously enhancing efficiency and lifetime of ultralong organic phosphorescence materials by molecular self-assembly. J. Am. Chem. Soc. 140, 34, 10734–10739 (2018).
11. Ali Fateminia, S. M., Mao, Z. et al. Organic nanocrystals with bright red persistent room-temperature phosphorescence for biological applications. Angew. Chem. Int. Ed. 129, 12328–12332 (2017).
12. Dang, Q., Jiang, Y., Wang, J. et al. Room-temperature phosphorescence resonance energy transfer for construction of near-infrared afterglow imaging agents. Adv. Mater. 32, 2006752 (2020).
13. Wang, Y., Gao, H., Yang, J. et al. High performance of simple organic phosphorescence host-guest materials and their application in time-resolved bioimaging. Adv. Mater. 2007811 (2021).
14. Gao, H., Gao, Z. et al. Boosting room temperature phosphorescence performance by alkyl modification for intravital orthotopic lung tumor imaging. Small 17, 2005449 (2021).
15. He, Z., Gao, H. et al. Achieving persistent, efficient, and robust room-temperature phosphorescence from pure organics for versatile applications. Adv. Mater. 31, 1807222 (2019).
16. Zhang, T., Ma, X., Wu, H. et al. Molecular engineering for metal-free amorphous materials with room-temperature phosphorescence. Angew. Chem. Int. Ed. 59, 11206–11216 (2020).
17. Li, J., Zhou, J., Mao, Z. et al. Transientand persistent room-temperature mechanoluminescence from a white-light-emitting AIEgen with tricolor emission switching triggered by light. Angew. Chem. Int. Ed. 130, 6559–6563 (2018).
18. Wang, T., Hu, Z., Nie, X. et al. Thermochromic aggregation-induced dual phosphorescence via temperature-dependent sp3-linked donor-acceptor electronic coupling. Nat. Commun. 12, 1364 (2021).
19. Yang, Z., Xu, C., Li, W., Mao, Z. et al. Boosting the quantum efficiency of ultralong organic phosphorescence up to 52% via intramolecular halogen bonding. Angew. Chem. Int. Ed. 59, 17451–17455 (2020).
20. Zhang, Y., Gao, L., Zheng, X. et al. Ultraviolet irradiation-responsive dynamic ultralong organic phosphorescence in polymeric systems. Nat. Commun. 12, 2297 (2021).
21. Dou, X., Zhu, T., Wang, Z. et al. Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers. Adv. Mater. 32, 2004768 (2020).
22. Ren, J., Wang, Y. et al. Force-induced turn-on persistent room-temperature phosphorescence in purely organic luminogen. Angew. Chem. Int. Ed. 60, 1–7 (2021).
23. Li, D., Lu, F., Wang, J. et al. Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy. J. Am. Chem. Soc. 140, 1916−1923 (2018).
24. Zhou, B. & Yan, D. P. Hydrogen-bonded two-component ionic crystals showing enhanced long-lived room-temperature phosphorescence via TADF-assisted förster resonance energy transfer. Adv. Funct. Mater. 29, 1807599 (2019).
25. Nidhankar, A., Goudappagouda. et al. Self-assembled helical arrays for the stabilization of the triplet state. Angew. Chem. Int. Ed. 59, 13079–13085 (2020).
26. Cai, S., Ma, H., Shi, H. et al. Enabling long-lived organic room temperature phosphorescence in polymers by subunit interlocking. Nat. Commun. 10, 4247 (2019).
27. Xiao, F., Wang, M., Lei, Y. et al. Achieving crystal-induced room temperature phosphorescence and reversible photochromic properties by strong intermolecular interactions. J. Mater. Chem. C 8, 17410−17416 (2020).
28. Xiao, L., Wu, Y., Yu, Z. et al. Room-temperature phosphorescence in pure organic materials: halogen bonding switching effects. Chem. Eur. J. 24, 1801–1805 (2018).
29. Wu, X., Huang, C-Y., Chen, D-G. et al. Exploiting racemism enhanced organic room-temperature phosphorescence to demonstrate Wallach’s rule in the lighting chiral chromophores. Nat. Commun. 11, 2145 (2020).
30. Wang, X., Guo, W., Xiao, H. et al. Pure organic room temperature phosphorescence from unique micelle-assisted assembly of nanocrystals in water. Adv. Funct. Mater. 30, 1907282 (2020).
31. Wang, X., Xiao, H., Chen, P. et al. Pure Organic room temperature phosphorescence from excited dimers in self-assembled nanoparticles under visible and near-infrared irradiation in water. J. Am. Chem. Soc. 141, 5045−5050 (2019).
32. Ono, T., Kimura, K., Ihara, M. et al. Room-temperature phosphorescence emitters exhibiting red to near-infrared emission derived from intermolecular charge-transfer triplet states of naphthalenediimide-halobenzoate triad molecules. Chem. Eur. J. DOI: 10.1002/chem.202100906.
33. Katsurada, Y., Hirata, S., Totani, K. et al. Photoreversible on-off recording of persistent room-temperature phosphorescence. Adv. Optical Mater. 3, 1726–1737 (2015).
34. Zhang, X., Du, L., Zhao, W. et al. Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nat. Commun. 10, 5161 (2019).
35. Chen, C., Chi, Z., Chong, K. C. et al. Carbazole isomers induce ultralong organic phosphorescence. Nat. Mater. 20, 175–180 (2021).
36. Alam, P., Leung, N. C., Liu, J. K. et al. Two are better than one: a design principle for ultralong-persistent luminescence of pure organics. Adv. Mater. 32, 2001026 (2020).
37. Chen, Y., Xie, Y., Shen, H., Lei, Y. et al. Tunable phosphorescence/fluorescence dual emissions of organic isoquinoline-benzophenone doped systems by akoxy engineering. Chem. Eur. J. 26, 17376–17380 (2020).
38. Chen, B., Huang, W., Su, H. et al. An unexpected chromophore–solvent reaction leads to bicomponent aggregation-induced phosphorescence. Angew. Chem. Int. Ed. 59, 10023–10026 (2020).
39. Wang, Y., Yang, Jie., Fang, Manman. et al. Forster resonance energy transfer: An efficient way to develop stimulus-responsive room-temperature phosphorescence materials and their applications. Matter 3, 449−463 (2020).
40. Lei, Y., Dai, W., Tian, Y. et al. Revealing insight into long-lived room-temperature phosphorescence of host-guest systems. J. Phys. Chem. Lett. 10, 6019−6025 (2019).
41. Lei, Y., Yang, J., Dai, W. et al. Efficient and organic host-guest room-temperature phosphorescence: tunable triplet-singlet crossing and theoretical calculations for molecular packing. Chem. Sci. DOI: 10.1039/d1sc01175h.
42. Wang, D., Xie, Y., Wu, X. et al. Excitation-dependent triplet-singlet intensity from organic host-guest materials: tunable color, white-light emission, and room-temperature phosphorescence. J. Phys. Chem. Lett. 12, 1814−1821 (2021).
43. Lei, Y., Dai, W., Guan, J. et al. Wide-range color-tunable organic phosphorescence materials for printable and writable security inks. Angew. Chem. Int. Ed. 59, 16054–16060 (2020).
44. Wei, J., Liang, B., Duan, R. et al. Induction of strong long-lived room-temperature phosphorescence of N-phenyl-2-naphthylamine molecules by confinement in a crystalline dibromobiphenyl matrix. Angew. Chem. Int. Ed. 128, 15818−15822 (2016).
45. Xie, Z., Zhang, X. et al. Wide-range lifetime-tunable and responsive ultralong organic phosphorescent multi-host/guest system. Nat. Commun. 12, 3522 (2021).
46. Wang, X., Sun, Y., Wang, G., Li, J., Li, X., Zhang, K. TADF-type organic afterglow. Angew. Chem. Int. Ed. DOI: 10.1002/anie.202105628.
47. Chen, B., Huang, W., Nie, X., Cheng, X., Liao, F., Miao, H., Zhang, X., Zhang, G. Organic guest-host system produces room-temperature phosphorescence at part-per-billion level. Angew. Chem. Int. Ed. DOI: 10.1002/anie.202106204.
48. Zhen, X., Tao, Y., An, Z., Chen, P., Xu, C., Chen, R., Huang, W., Pu, K. Adv. Mater, 29, 1606665 (2017).
49. Dang, Q., Jiang, Y., Wang, J., Wang, J., Zhang, Q., Zhang, M., Luo, S., Xie, Y., Pu, K., Li, Q., Li, Z. Room-temperature phosphorescence resonance energy transfer for construction of near-infrared afterglow imaging agents. Adv. Mater. 32, 2006752 (2020).
50. Liu, X., Dai, W., Qian, J., Lei, Y., Liu, M., Cai, Z., Huang, X., Wu, H., Dong, Y. Pure room temperature phosphorescence emission of an organic host–guest doped system with a quantum efficiency of 64%. J. Mater. Chem. C 9, 3391−3395 (2021).
51. Wang, Y., Gao, H., Yang, J., Fang, M., Ding, D., Tang, B. Z., Li, Z. High performance of simple organic phosphorescence host–guest materials and their application in time-resolved bioimaging. Adv. Mater. 33, 2007811 (2021).