1. Wadsworth, C. T., Krishnan, R., Sear, M., Harrold, J. & Nielsen, D. H. Intrarater reliability of manual muscle testing and hand-held dynametric muscle testing. Phys. Ther. 67, 1342-1347, DOI: https://doi.org/10.1093/ptj/67.9.1342 (1987).
2. Thaweewannakij, T. et al. Reference values of physical performance in Thai elderly people who are functioning well and dwelling in the community. Phys. Ther. 93, 1312-1320, DOI: https://doi.org/10.2522/ptj.20120411 (2013).
3. Schwartz, S., Cohen, M. E., Herbison, G. J. & Shah, A. Relationship between two measures of upper extremity strength: manual muscle test compared to hand-held myometry. Arch. Phys. Med. Rehabil. 73, 1063-1068 (1992).
4. Bohannon, R. W. Manual muscle testing: does it meet the standards of an adequate screening test? Clin. Rehabil. 19, 662-667, DOI: https://doi.org/10.1191/0269215505cr873oa (2005).
5. De Luca, C. Electromyography. Encyclopedia of medical devices and instrumentation (2006).
6. Orizio, C. Muscle sound: bases for the introduction of a mechanomyographic signal in muscle studies. Crit. Rev. Biomed. Eng. 21, 201-243 (1993).
7. Barry, D. T., Gordon, K. E. & Hinton, G. G. Acoustic and surface EMG diagnosis of pediatric muscle disease. Muscle Nerve 13, 286-290, DOI: https://doi.org/10.1002/mus.880130403 (1990).
8. Madeleine, P., Bajaj, P., Sogaard, K. & Arendt-Nielsen, L. Mechanomyography and electromyography force relationships during concentric, isometric and eccentric contractions. J. Electromyogr. Kinesiol. 11, 113-121, DOI: https://doi.org/10.1016/S1050-6411(00)00044-4 (2001).
9. Beck, T. W. et al. Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomed. Eng. Online 4, 67, DOI: https://doi.org/10.1186/1475-925x-4-67 (2005).
10. Anders, J. P. V. et al. Inter- and Intra-Individual Differences in EMG and MMG during Maximal, Bilateral, Dynamic Leg Extensions. Sports (Basel) 7, DOI: https://dx.doi.org/10.3390%2Fsports7070175 (2019).
11. Shinohara, M., Kouzaki, M., Yoshihisa, T. & Fukunaga, T. Mechanomyography of the human quadriceps muscle during incremental cycle ergometry. Eur. J. Appl. Physiol. Occup. Physiol. 76, 314-319, DOI: https://doi.org/10.1007/s004210050254 (1997).
12. Housh, T. J. et al. Mechanomyographic and electromyographic responses during submaximal cycle ergometry. Eur. J. Appl. Physiol. 83, 381-387, DOI: https://doi.org/10.1007/s004210000315 (2000).
13. Perry, S. R. et al. Mean power frequency and amplitude of the mechanomyographic and electromyographic signals during incremental cycle ergometry. J. Electromyogr. Kinesiol. 11, 299-305, DOI: https://doi.org/10.1016/s1050-6411(00)00057-2 (2001).
14. Bergstrom, H. C. et al. Mechanomyographic and metabolic responses during continuous cycle ergometry at critical power from the 3-min all-out test. J. Electromyogr. Kinesiol. 23, 349-355, DOI: https://doi.org/10.1016/j.jelekin.2012.11.001 (2013).
15. Dick, T. J. M., Biewener, A. A. & Wakeling, J. M. Comparison of human gastrocnemius forces predicted by Hill-type muscle models and estimated from ultrasound images. J. Exp. Biol. 220, 1643-1653, DOI: https://doi.org/10.1242/jeb.154807 (2017).
16. Watakabe, M., Mita, K., Akataki, K. & Ito, K. Reliability of the mechanomyogram detected with an accelerometer during voluntary contractions. Med. Biol. Eng. Comput. 41, 198-202, DOI: https://doi.org/10.1007/BF02344888 (2003).
17. Oka, H., Konishi, Y. & Kitawaki, T. Simultaneous Measurement of Displacement-MMG/EMG during Exercise. SICE Journal of Control, Measurement, and System Integration 7, 332-336, DOI: https://doi.org/10.9746/jcmsi.7.332 (2014).
18. Fukuhara, S., Watanabe, S. & Oka, H. Novel mechanomyogram/electromyogram hybrid transducer measurements reflect muscle strength during dynamic exercise — pedaling of recumbent bicycle —. Adv. Biomed. Eng. 7, 47-54, DOI: https://doi.org/10.14326/abe.7.47 (2018).
19. Tsuji, H. et al. Quantification of patellar tendon reflex using portable mechanomyography and electromyography devices. Sci. Rep. 11, 2284, DOI: https://doi.org/10.1038/s41598-021-81874-5 (2021).
20. Fukuhara, S. & Oka, H. A simplified analysis of real-time monitoring of muscle contraction during dynamic exercise using an MMG/EMG hybrid transducer system. Adv. Biomed. Eng. 8, 185-192, DOI: https://doi.org/10.14326/abe.8.185 (2019).
21. McCall, G. E., Byrnes, W. C., Dickinson, A., Pattany, P. M. & Fleck, S. J. Muscle fiber hypertrophy, hyperplasia, and capillary density in college men after resistance training. J. Appl. Physiol. 81, 2004-2012, DOI: https://doi.org/10.1152/jappl.1996.81.5.2004 (1996).
22. Folland, J. P. & Williams, A. G. The adaptations to strength training : morphological and neurological contributions to increased strength. Sports Med. 37, 145-168, DOI: https://doi.org/10.2165/00007256-200737020-00004 (2007).
23. Miyamoto, N., Hirata, K., Inoue, K. & Hashimoto, T. Muscle Stiffness of the Vastus Lateralis in Sprinters and Long-Distance Runners. Med. Sci. Sports Exerc. 51, 2080-2087, DOI: https://doi.org/10.1249/mss.0000000000002024 (2019).
24. Lesmes, G., Costill, D., Coyle, E. & Fink, W. Muscle strength and power changes during maximal isometric training. Med. Sci. Sports 10, 266-269 (1978).
25. Staron, R. S. et al. Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women. Eur. J. Appl. Physiol. Occup. Physiol. 60, 71-79, DOI: https://doi.org/10.1007/bf00572189 (1990).
26. Staron, R. S. et al. Strength and skeletal muscle adaptations in heavy-resistance-trained women after detraining and retraining. J. Appl. Physiol. 70, 631-640, DOI: https://doi.org/10.1152/jappl.1991.70.2.631 (1991).
27. De Luca, C. J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 13, 135-163, DOI: https://doi.org/10.1123/jab.13.2.135 (1997).
28. Orizio, C., Perini, R., Diemont, B., Maranzana Figini, M. & Veicsteinas, A. Spectral analysis of muscular sound during isometric contraction of biceps brachii. J. Appl. Physiol. 68, 508-512, DOI: https://doi.org/10.1152/jappl.1990.68.2.508 (1990).
29. Akataki, K., Mita, K. & Itoh, Y. Relationship between mechanomyogram and force during voluntary contractions reinvestigated using spectral decomposition. Eur. J. Appl. Physiol. Occup. Physiol. 80, 173-179, DOI: https://doi.org/10.1007/s004210050578 (1999).
30. Nonaka, H., Mita, K., Akataki, K., Watakabe, M. & Itoh, Y. Sex differences in mechanomyographic responses to voluntary isometric contractions. Med. Sci. Sports Exerc. 38, 1311-1316, DOI: https://doi.org/10.1249/01.mss.0000227317.31470.16 (2006).
31. Tian, S.-L., Liu, Y., Li, L., Fu, W.-J. & Peng, C.-H. Mechanomyography is more sensitive than EMG in detecting age-related sarcopenia. J. Biomech. 43, 551-556, DOI: https://doi.org/10.1016/j.jbiomech.2009.09.034 (2010).
32. Davies, C. T. M. & Sandstrom, E. R. Maximal mechanical power output and capacity of cyclists and young adults. Eur. J. Appl. Physiol. Occup. Physiol. 58, 838-844, DOI: https://doi.org/10.1007/BF02332216 (1989).
33. Dorel, S. et al. Torque and power-velocity relationships in cycling: relevance to track sprint performance in world-class cyclists. Int. J. Sports Med. 26, 739-746, DOI: https://doi.org/10.1055/s-2004-830493 (2005).
34. Dorel, S., Drouet, J.-M., Couturier, A., Champoux, Y. & Hug, F. Changes of pedaling technique and muscle coordination during an exhaustive exercise. Med. Sci. Sports Exerc. 41, 1277-1286, DOI: https://doi.org/10.1249/mss.0b013e31819825f8 (2009).
35. Alkner, B. A., Tesch, P. A. & Berg, H. E. Quadriceps EMG/force relationship in knee extension and leg press. Med. Sci. Sports Exerc. 32, 459-463, DOI: https://doi.org/10.1097/00005768-200002000-00030 (2000).
36. Doheny, E. P., Lowery, M. M., Fitzpatrick, D. P. & O'Malley, M. J. Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles. J. Electromyogr. Kinesiol. 18, 760-770, DOI: https://doi.org/10.1016/j.jelekin.2007.03.006 (2008).
37. Orizio, C. et al. Muscle surface mechanical and electrical activities in myotonic dystrophy. Electromyogr. Clin. Neurophysiol. 37, 231-239 (1997).
38. Costill, D. L., Fink, W. J. & Pollock, M. L. Muscle fiber composition and enzyme activities of elite distance runners. Med. Sci. Sports 8, 96-100 (1976).
39. Andersen, P. & Henriksson, J. Capillary supply of the quadriceps femoris muscle of man: adaptive response to exercise. J. Physiol. 270, 677-690, DOI: https://doi.org/10.1113/jphysiol.1977.sp011975 (1977).
40. Horowitz, J., Sidossis, L. & Coyle, E. High Efficiency of Type I Muscle Fibers Improves. Int. J. Sports Med. 15, 152-157, DOI: https://doi.org/10.1055/s-2007-1021038 (1994).
41. Hunter, G. R., Newcomer, B. R., Larson-Meyer, D. E., Bamman, M. M. & Weinsier, R. L. Muscle metabolic economy is inversely related to exercise intensity and type II myofiber distribution. Muscle Nerve 24, 654-661, DOI: https://doi.org/10.1002/mus.1051 (2001).
42. Scheuermann, B. W., Tripse McConnell, J. H. & Barstow, T. J. EMG and oxygen uptake responses during slow and fast ramp exercise in humans. Exp. Physiol. 87, 91-100, DOI: https://doi.org/10.1113/eph8702246 (2002).
43. Esposito, F. et al. Electrical and mechanical response of finger flexor muscles during voluntary isometric contractions in elite rock-climbers. Eur. J. Appl. Physiol. 105, 81-92, DOI: https://doi.org/10.1007/s00421-008-0877-5 (2009).
44. Enoka, R. M., Burnett, R. A., Graves, A. E., Kornatz, K. W. & Laidlaw, D. H. Task- and age-dependent variations in steadiness. Prog. Brain Res. 123, 389-395, DOI: https://doi.org/10.1016/S0079-6123(08)62873-3 (1999).
45. Sorensen, T. J. et al. The association between submaximal quadriceps force steadiness and the knee adduction moment during walking in patients with knee osteoarthritis. J. Orthop. Sports Phys. Ther. 41, 592-599, DOI: https://doi.org/10.2519/jospt.2011.3481 (2011).
46. Enoka, R. M. et al. Mechanisms that contribute to differences in motor performance between young and old adults. J. Electromyogr. Kinesiol. 13, 1-12, DOI: https://doi.org/10.1016/s1050-6411(02)00084-6 (2003).
47. Laidlaw, D. H., Bilodeau, M. & Enoka, R. M. Steadiness is reduced and motor unit discharge is more variable in old adults. Muscle Nerve 23, 600-612, DOI: https://doi.org/10.1002/(SICI)1097-4598(200004)23:4<600::AID-MUS20>3.0.CO;2-D (2000).
48. Tracy, B. L. & Enoka, R. M. Older adults are less steady during submaximal isometric contractions with the knee extensor muscles. J. Appl. Physiol. 92, 1004-1012, DOI: https://doi.org/10.1152/japplphysiol.00954.2001 (2002).
49. Dorel, S., Couturier, A. & Hug, F. Intra-session repeatability of lower limb muscles activation pattern during pedaling. J. Electromyogr. Kinesiol. 18, 857-865, DOI: https://doi.org/10.1016/j.jelekin.2007.03.002 (2008).
50. Mahoney, F. I. & Barthel, D. W. Functional evaluation: the Barthel Index: a simple index of independence useful in scoring improvement in the rehabilitation of the chronically ill. Md. State Med. J. 14, 61-65 (1965).
51. Heinemann, A. W., Michael Linacre, J., Wright, B. D., Hamilton, B. B. & Granger, C. Measurement characteristics of the Functional Independence Measure. Top. Stroke Rehabil. 1, 1-15, DOI: https://doi.org/10.1080/10749357.1994.11754030 (1994).