Chemical properties of HyAs
To explore the effects of different molecular weight forms of HyA on inflammatory response in LPS-unstimulated and -stimulated macrophages, we used commercial HyA with nominal molecular weights of 10 kDa, 100 kDa, 500 kDa and 1,500 kDa, designated LMW-10, MMW-100, MMW-500 and HMW-1,500, respectively. First, we evaluated the structures and actual molecular weights of each HyA by 1H NMR and GPC, respectively.
HyA is the repeating unit of a GAG composed of β-1, 3-N-acetyl-D-glucosamine and β-1, 4-glucuronic acid (Fig. 2) [28, 30]. As shown in 1H NMR spectra, there was a broad signal between 3.2 and 3.9 ppm in the spectrum of HyAs of various molecular weights that corresponded to protons in the sugar rings (Fig. 2A-D, labels a, b, c, d, f, g, h, and k) [31]. Although signals overlapped, making it difficult to assign each proton individually, it was possible to assign signals according to their corresponding protons in the sugar rings. We also detected a characteristic signal between 4.3 and 4.5 ppm corresponding the two anomeric protons attached to the carbons adjacent to the two oxygen atoms (Fig. 2A-D, labels e and i). The methyl protons of the N-acetyl group of HyA showed a signal between 1.8 and 2.0 ppm (Fig. 2A-D, label l), and the D2O peak showed a signal between 4.6 and 4.8 ppm. Integration of LMW-10, MMW-100, MMW-500 and HMW-1,500 revealed a proton ratio of 2.0 (anomeric protons):10.0 (protons of the sugar rings):3.0 (protons of the methyl group). We confirmed that chemical structure of HyA was correct and the solution were free from impurities. The resolution of various molecular weight forms of HyA differed, but there was no difference in proton integration.
The molecular weights of HyA were confirmed by GPC using RI, LALS, RALS, and viscometer systems. The experimentally determined dn/dc value of HyA solutions investigated here was found to be 0.147 m/g, a value somewhat lower than previously reported dn/dc values, which range from 0.155 to 0.176 [32]. These variations in dn/dc values are most likely attributable to differences in the wavelength and solvent used (buffer containing 0.1 M NaCl in the present case). The weight-average molecular weights of HyAs obtained using GPC for each sample are given in Table 2. The standards, PEO 24 kDa and dextran 73 kDa, were confirmed to have molecular weights of 23,128 ± 573 and 72,060 ± 258 Da, respectively. The molecular weight of LMW-10, MMW-100, MMW-500, and HMW-1,500 were 13,241 ± 161 Da, 96,531 ± 1,167 Da, 512,657 ± 8,545 Da, and 1,249,500 ± 37,477 Da, respectively. The polydispersity (Mw/Mn) values of LMW-10, MMW-100, MMW-500, and HMW-1,500 were 1.376 ± 0.006, 1.389 ± 0.035, 1.304 ± 0.001, and 1.120 ± 0.044, respectively.
Table 2
Molecular weights and polydispersity (Mw/Mn) of HyA measured by GPC
Samples | Mn (Da) | Mw (Da) | Mz (Da) | PDI |
Standard materials | PEO 24k Dextran 73k | 22,652 ± 460 58,991 ± 190 | 23,128 ± 573 72,060 ± 258 | 23,430 ± 602 94,912 ± 1,169 | 1.022 ± 0.005 1.170 ± 0.030 |
HyAs | LMW-10 MMW-100 MMW-500 HMW-1,500 | 9,013 ± 938 69,531 ± 882 365,273 ± 6,043 1,059,500 ± 4,950 | 13,241 ± 161 96,531 ± 1,167 512,657 ± 8,545 1,249,500 ± 37,477 | 16,951 ± 58 137,763 ± 1,217 748,347 ± 3,247 1,547,000 ± 56,569 | 1.376 ± 0.006 1.389 ± 0.035 1.304 ± 0.001 1.120 ± 0.044 |
Effects of HyA on the production of NO in macrophages
NO is an ROS and free radical involved in many pathological and physiological processes [24]. It is also a major mediator of apoptosis and inflammatory processes that acts via complex mechanisms to play a role in nonspecific immunity associated with tissue injuries [33]. Accordingly, we evaluated the effects of different molecular weights and concentrations (10 and 100 µg/mL) of HyA on inflammatory responses in macrophages by assaying NO production. A shown in Fig. 3, we first found that 24-hour treatment with 100 ng/mL of LPS significantly increased NO production in macrophages (22.38 µM) compared with that in unstimulated macrophages (0.31 µM).
We also found that the various molecular weight forms of HyA alone had no effect on NO production in unstimulated macrophages. LPS-stimulated macrophages treated with 10 and 100 µg/mL of low molecular weight of HyA (LMW-10) showed NO production levels of 19.31 and 17.30 µM, respectively. For the higher molecular weight forms MMW-100, MMW-500, and HMW-1,500, HyA treatment of LPS-stimulated macrophages yielded NO production levels of 18.84, 16.15, and 15.31 µM, respectively, at 10 µg/mL, and 15.55, 14.37, and 11.79 µM, at 100 µg/mL.
Distinct expression patterns of specific immune-related genes in macrophages treated with HyA
Next, we studied the expression levels of 280 immune genes in LPS-stimulated macrophages treated with various molecular weights of HyA using NanoString technology (Fig. 4A). The precision of a given method for relative measurements of gene expressions in LPS-stimulated macrophages is to be validated usually by evaluating similar results in both heatmap and scatter plot. For outcomes depicted as a heatmap, z-score data are applied to averaging gene levels, as shown in Fig. 4. The standard visualization technique used in scatter plots is a logarithmic transformation of data (Fig. 4A) performed using nCounter (Fig. 4B), with each plot color-colored according to the immune genes. Scatter plots showed that compared with untreated macrophages (control), LPS-stimulated macrophages treated with various molecular weights and concentrations (10 and 100 µg/mL) of HyA showed over-expression of 42 immune genes (Fig. 5A). Of these 42 immune genes in LPS-stimulated macrophages treated with different molecular weight forms of HyA, eight were associated with M1 or M2 macrophage-specific responses (Fig. 5B). In addition to the immune-specific genes (TNF-α, IL-6, IL-1β, TGF-β1, IL-10, IL-11 and CCL2), we found high expression levels of Arg1 in LPS-stimulated macrophages treated with various molecular weights forms of HyA. These eight genes were variously up- or down-regulated in in LPS-stimulated macrophages compared with controls in response to different molecular weights and concentrations of HyA.
With the exception of the highest molecular weight form, HMW-1,500, all HyA treatment groups showed up-regulated expression of the M1 associated genes, TNF-α, IL-6, CCL2 and IL-1β. IL-1β in particular was highly over-expressed in LPS-stimulated macrophages. Interestingly, all HyA treatment groups exhibited high levels of TGF-β1, which associated with the M2 macrophage phenotype. In contrast, expression levels of IL-10, IL-11 and Arg1 associated with M2 macrophages were lower relative to those genes associated with M1 macrophages (TNF‐α, IL-6, IL-1β, and CCL2). Overall, expression of genes associated with the M2 phenotype in LPS-stimulated macrophages, was lower in the HMW-1,500 treatment group than in other treatment groups.
Effects of HyA on the expression of genes associated with the M1 phenotype in macrophages
We next quantitatively evaluated the effects of molecular weight and concentration of HyA on 4 genes expression of the four M1 macrophage-associated genes identified by nCounter with phase-TNF-α, IL-6, IL-1β, and CCL2-using RT-PCR.
To this end, we treated unstimulated and LPS-stimulated macrophages with HyA at a high (100 µg/mL) and low (10 µg/mL) concentration. mRNA levels of each of these pro-inflammatory genes in macrophages treated with HyA are shown in Fig. 6.
TNF-α expression in LPS-stimulated macrophages was up‐regulated 15.1-fold (Fig. 6A). In LPS-stimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500 groups, TNF‐α expression was up‐regulated by 16.0-, 19.5-, 17.5-, and 16.1-fold, respectively. Following treatment with 100 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500, TNF‐α expression in LPS-stimulated macrophages was up-regulated by 15.9-, 16.2-, 16.4- and 13.2-fold, respectively. This latter value for the HMW-1,500 group (13.2-fold) represents a 12.6% suppression of TNF‐α expression relative to that in macrophages stimulates with LPS alone (15.1-fold).
As shown in Fig. 6B, IL-6 expression in LPS-stimulated macrophages was up‐regulated by 12.5-fold; this compared with 13.5-, 14.4-, 13.3-, and 13.0-fold increases in IL‐6 expression in LPS-stimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500, respectively. At a higher concentration (100 µg/mL), LMW-10, MMW-100, MMW-500, and HMW-1,500 treatment up-regulated IL‐6 expression in LPS-stimulated macrophages by 11.4-, 13.5-, 12.0-, and 11.0-fold, respectively, indicating a slight suppressive effect on IL‐6 expression at this higher concentration of HyA.
The overall pattern of IL-1β expression in LPS-stimulated macrophages (Fig. 6C) was similar to that for IL6 expression (Fig. 6B), although levels of induction were higher for IL‐1β. Specifically, IL‐1β expression was up‐regulated by 58.8-fold in macrophages stimulate with LPS alone. In LPS-stimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, or MMW-500, IL‐1β expression was up‐regulated by 62.4-, 62.2-, and 68.0-fold, respectively. However, for LPS-stimulated macrophages treated with high molecular-weight form HyA (HMW-1,500) at a low concentration (10 µg/mL), IL‐1β expression was down‐regulated 54.8-fold in LPS-stimulated macrophages. Following treatment of LPS-stimulated macrophages with 100 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500, IL‐1β expression was also up‐regulated by 64.5-, 64.8-, 55.4-, and 50.4-fold, respectively. Interestingly, for MMW-500 at a high concentration (100 µg/mL), IL‐1β expression was slightly suppressed in LPS-stimulated macrophages. Treatment of LPS-stimulated macrophages with 100 µg/mL of HMW-1,500 also showed a suppression effect (14.2%) on IL‐1β expression.
CCL2 expression in LPS-stimulated macrophages was up-regulated by 8.7-fold, as shown in Fig. 6D. In LPS-stimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500, CCL2 expression up‐regulated by 8.8-, 8.9-, 11.0-, and 10.1-fold, respectively. Following treatment of LPS-stimulated macrophages with LMW-10, MMW-100 and MMW-500 at the higher concentration of 100 µg/mL, CCL2 expression level was up‐regulated by 9.3-, 9.3-, and 11.1-fold. In contrast, LPS-stimulated macrophages with 100 µg/mL of HMW-1,500 exerted a 27.6% suppressive effect on CCL2 expression. Thus, HMW-1,500 at a high concentration (100 µg/mL) significantly decreased expression of pro-inflammatory genes in LPS-stimulated macrophages. These results show that the molecular weight and concentration of HyA can significantly affect the pro-inflammatory response of LPS-unstimulated macrophages.
Effects of HyA on the expression of genes associated with M2 phenotype in macrophages
Next, we assessed the effects of HyA molecular weight and concentration on the anti-inflammatory response of LPS-unstimulated and LPS-stimulated macrophages by quantitatively evaluating expression of the four M2 macrophage-associated genes identified by nCounter—TGF-β1, IL-10, IL-11, and Arg1—using RT-PCR, as described above for M1-associated genes. mRNA levels of each of these anti-inflammatory genes in macrophage treated with HyA are summarized in Fig. 7.
As shown in Fig. 7A, TGF- β1 expression in macrophages stimulated with LPS alone was up-regulated 1.5-fold. In LPS-unstimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500 kDa, TGF-β1 expressions was slightly up-regulated by 1.3-, 1.3-, 1.4, and 1.4-fold, respectively. At the high concentration of 100 µg/mL, treatment with LMW-10, MMW-100, MMW-500, or HMW-1,500 kDa was also slightly up-regulated by 1.4-, 1.5-, 1.6, 1.4-fold, respectively. Interestingly, however, in all cases TGF-β1 expression in LPS-stimulated macrophages treated with either concentration of HyA increased with increases in the molecular weight of HyA. TGF-β1 expression was significantly up-regulated by 1.8-, 2.0-, 2.0, and 2.0-fold in LPS-stimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500 kDa, and showed a corresponding significant upregulation of 1.9-, 1.9-, 2.1, 2.5-fold following treatment with 100 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500 kDa. Although TGF-β1 expression in LPS-unstimulated macrophages was not significantly altered by any molecular weight form of HyA at either concentration, its expression in LPS-unstimulated macrophages was increased as the molecular weight of HyA increased, but was not affected by the concentration of HyA.
IL-10 expression levels in LPS-stimulated macrophages were significantly decreased by 0.3-fold (Fig. 7B). Although the effects of different molecular weight forms of HyA were not significant, there was a trend toward a difference in IL-10 expression levels with HyA concentration. Specifically, IL-10 expression in LPS-unstimulated and -stimulated macrophages treated with a low concentration (10 µg/mL) of different molecular weight forms of HyA was lower than that in controls. At a high concentration (100 µg/mL), IL-10 expression in LPS-unstimulated macrophages treated with LMW-10, MMW-500, or HMW-1,500 was slightly up-regulated by 1.1-, 1.2-, 1.7-fold, respectively; no change in IL-10 expression was observed in the MMW-100 group. IL-10 expression in LPS-stimulated macrophages treated with 100 µg/mL of MMW-500, or HMW-1,500 was up-regulated by 1.5- and 1.7-fold, respectively. Tends in IL-10 expression in macrophages treated with HyA with molecular weights great than 500kDa were similar in LPS-unstimulated and -stimulated groups. IL-10 expression in LPS-unstimulated macrophages treated with low molecular-weight HyA (LMW-10) was similar to that observed following treatment with MMW-500. Although there was a tendency for IL-10 expression levels to differ according the concentration of HyA, this difference did not reach statistical significance.
IL-11 expression in LPS-unstimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500 was up-regulated by 3.5-, 1.1-, 1.4-, and 4.3-fold, respectively (Fig. 7C). In LPS-unstimulated macrophages treated with 100 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500, IL-11 expression was up-regulated by 5.6-, 2.1-, 4.1-, and 5.9-fold, respectively. LPS-unstimulated macrophages treated with LMW-10 or HMW-1,500 showed a HyA-concentration–dependent increase IL-11 expression levels. For MMW-100 and MMW-500 treatment groups, however, IL-11 expression in LPS-unstimulated macrophages moved in opposite directions as function of concentration: for the MMW-100 group, IL-11 expression was up-regulated by 4.3-fold by treatment with 10 µg/mL and down-regulated by 2.5-fold by treatment with 100 µg/mL; for the MMW-500 group, IL-11 expression was down-regulated by 0.9-fold at 10 µg/mL up-regulated by 5.7-fold at 100 µg/mL.
As shown in Fig. 7D, Arg1 expressions in LPS-unstimulated and -stimulated macrophages treated with HyA showed a similar tendency to that of IL-11 (Fig. 7C). Arg1 expression in LPS-unstimulated macrophages treated with a low concentration (10 µg/mL) of LMW-10, MMW-500, or HMW-1,500 was up-regulated by 3.1-, 1.3- and 3.4-fold, respectively; no changes in Arg1 expression were observed in the MMW-100 group. In LPS-unstimulated macrophages treated with 10 µg/mL of LMW-10, MMW-100, MMW-500, or HMW-1,500, Arg1 expression was up-regulated 4.4-, 1.4-, 2.3-, and 5.8-fold, respectively. We further found that LMW-10 or HMW-1,500 increased Arg1 expression levels in LPS-unstimulated macrophages in a concentration-dependent manner. The greatest Arg1 upregulation (4.9-fold) was observed for HMW-1,500 at a concentration of 10 µg/mL in LPS-stimulated macrophages.
IL-11 and Arg1 expression patterns in macrophages treated with small-molecular-weight form of HyA were similar to that of IL-10. Interestingly, at the high concentration (100 µg/mL), IL-11 and Arg1 expression in LPS-unstimulated and LPS-stimulated macrophages was highest in two groups: LMW-10, with the smallest molecular weight of 13 kDa, and HMW-1,500, with the largest molecular weight of 1,249 kDa. The expression behaviors of these genes in macrophages treated with HyA were not significantly dependent on LPS stimulation.