[1]. Fretwurst, T., Nelson, K., Tarnow, D. P., Wang, H. L. & Giannobile, W. V. Is Metal Particle Release Associated with Peri-implant Bone Destruction? An Emerging Concept. J. Dent. Res. 97, 259–265 (2018).
[2]. Julien Barthes, Sait Ciftci, Florian Ponzio, Helena Knopf-Marques, Liza Pelyhe, Alexandru Gudima, Imre Kientzl, Eszter Bognár, Miklós Weszl, Julia Kzhyshkowska & Nihal Engin Vrana. Review: the potential impact of surface crystalline states of titanium for biomedical applications. Crit. Rev. Biotechnol. 38, 423–437 (2018).
[3]. Vasconcelos, D. M., Santos, S. G. & Lamghari, M. Biomaterials The two faces of metal ions : From implants rejection to tissue repair / regeneration. Biomateriais 84, 262–275 (2016).
[4]. Prokopovich, Polina. Interactions between mammalian cells and nano- or micro-sized wear particles: Physico-chemical views against biological approaches. Advances in Colloid and Interface Science, 213, 36–47 (2014).
[5]. Balachandran, Shanoob; Zachariah, Zita; Fischer, Alfons; Mayweg, David; Wimmer, Markus A.; Raabe, Dierk; Herbig, Michael. Atomic Scale Origin of Metal Ion Release from Hip Implant Taper Junctions. Advanced Science, 1903-008 (2020).
[6]. Schoon J, Hesse B, Rakow A, Ort MJ, Lagrange A, Jacobi D, Winter A, Huesker K, Reinke S, Cotte M, Tucoulou R, Marx U, Perka C, Duda GN, Geissler S. Metal-Specific Biomaterial Accumulation in Human Peri-Implant Bone and Bone Marrow. Adv Sci, 3;7(20):2000412 (2020).
[7]. Ryan D. Ross, Youping Deng, Rui Fang, Nicholas B. Frisch, Joshua J. Jacobs, Dale R. Sumner. Discovery of Biomarkers to Identify Peri-Implant Osteolysis Before Radiographic Diagnosis. J Orthop Res. 36, 2754–2761 (2018).
[8]. Gruber, R. Osteoimmunology : Inflammatory osteolysis and regeneration of the alveolar bone. J Clin Periodontol. 46, 52–69 (2019).
[9]. Howie DW, Neale SD, Haynes DR, Holubowycz OT, McGee MA, Solomon LB, Callary SA, Atkins GJ, Findlay DM. Periprosthetic osteolysis after total hip replacement : molecular pathology and clinical management. Inflammopharmacol 21, 389–396 (2013).
[10]. Adrese M Kandahari, Xinlin Yang, Kevin A Laroche , Abhijit S Dighe , Dongfeng Pan & Quanjun Cui. A review of UHMWPE wear-induced osteolysis : the role for early detection of the immune response. Bone Res 4, 16014 (2016).
[11]. Mitzi S. Laughlin, Emily A. Vidal, Arin A. Drtil, Robin N. Goytia, Vasilios Mathews, Anay R. Patel, Mortality After Revision Total Hip Arthroplasty. The Journal of Arthroplasty, 0883-5403, (2021).
[12]. Scherbart, A.M., Langer, J., Bushmelev, A. et al. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol 8, 31 (2011).
[13]. Hessvik, N. P. & Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 75, 193–208 (2018).
[14]. Colombo, M., Raposo, G. & Théry, C. Biogenesis, Secretion, and Intercellular Interactions of Exosomes and Other Extracellular Vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).
[15]. Cocucci, E. & Meldolesi, J. Ectosomes and exosomes: Shedding the confusion between extracellular vesicles. Trends Cell Biol. 25, 364–372 (2015).
[16]. Hughes, C.S., Colhoun, L.M., Bains, B.K. et al. Extracellular cathepsin S and intracellular caspase 1 activation are surrogate biomarkers of particulate-induced lysosomal disruption in macrophages. Part Fibre Toxicol 13, 19 (2015).
[17]. Pieters, Bartijn C. H.; Cappariello, Alfredo; van den Bosch, Martijn H. J.; van Lent, Peter L. E. M.; Teti, Anna; van de Loo, Fons A. J. Macrophage-Derived Extracellular Vesicles as Carriers of Alarmins and Their Potential Involvement in Bone Homeostasis. Frontiers in Immunology, 10, 1901 (2019).
[18]. Mathieu, M., Martin-jaular, L., Lavieu, G. & Théry, C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat. Cell Biol. 21, (2019).
[19]. Ana R. Ribeiro, Arijita Mukherjee , Xuan Hu, Shayan Shafien, Reza Ghodsi , Kun Ele, Sara Gemini-Piperni , Canhui Wang, Robert F. Klie, Tolou Shokuhfar , Reza Shahbazian- Yassar , Radovan Borojevic , Luis A. Rocha & José M. Granjeiro. Bio-camouflage of anatase nanoparticles explored by: In situ high-resolution electron microscopy. Nanoscale 9, 10684–10693 (2017).
[20]. AR Ribeiro, S. Gemini-Piperni , R. Travassos, L. Lemgruber , R. C. Silva , A. L. Rossi , M. Farina, K. Anselme , T. Shokuhfar, R. Shahbazian-Yassar, R. Borojevic , L. A. Rocha , J. Werckmann, & JM Granjeiro . Trojan-Like Internalization of Anatase Titanium Dioxide Nanoparticles by Human Osteoblast Cells. Sci. Rep. 6, 1–11 (2016).
[21]. Cardoso AP, Pinto ML, Pinto AT, Pinto MT, Monteiro C, Oliveira MI, Santos SG, Relvas JB, Seruca R, Mantovani A, Mareel M, Barbosa MA, Oliveira MJ. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour. BMC Cancer 15, 1–14 (2015).
[22]. Thery, C.; Amigorena, S.; Raposo, G.; Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 3, 3-22, (2006).
[23]. Couto, Marina; Vasconcelos, Daniela P.; Sousa, Daniela M.; Sousa, Beatriz; Conceição, Francisco; Neto, Estrela; Lamghari, Meriem; Alves, CecÃlia J. The Mechanisms Underlying the Biological Response to Wear Debris in Periprosthetic Inflammation. Frontiers in Materials, 7, 274 (2020).
[24]. Schoon, Janosch; Hesse, Bernhard; Rakow, Anastasia; Ort, Melanie J.; Lagrange, Adrien; Jacobi, Dorit; Winter, Annika; Huesker, Katrin; Reinke, Simon; Cotte, Marine; Tucoulou, Remi; Marx, Uwe; Perka, Carsten; Duda, Georg N.; Geissler, Sven. Metala-Specific Biomaterial Accumulation in Human Peri-Implant Bone and Bone Marrow. Advanced Science, 20004-12 (2020).
[25]. Shi-Cong Tao & Shang-Chun Guo. Extracellular vesicles in bone : “ dogrobbers ” in the “ eternal battle field ”. Cell Commun. Signal 5, 1–13 (2019).
[26]. Van Niel, G., D’Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol. 19, 213–228 (2018).
[27]. Masaoutis, Christos; Theocharis, Stamatios. The Role of Exosomes in Bone Remodeling: Implications for Bone Physiology and Disease. Disease Markers, 1–12 (2019).
[28]. Hallab, N. J. & Jacobs, J. J. Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris. Front Endocrinol 8, 1–10 (2017).
[29]. Stuart B. Goodman, Jiří Gallo, E. F. D. G. & M. T. Diagnosis and Management of Implant Debris- Associated Inflammation. Expert Rev. Med. Devices 17, 41-56 (2020).
[30]. Kaufman, A. M., Alabre, C. I., Rubash, H. E. & Shanbhag, A. S. Human macrophage response to UHMWPE, TiAlV, CoCr, and alumina particles : Analysis of multiple cytokines using protein arrays. J Biomed Mater Res A 84, 464–474 (2007).
[31].Jukka Pajarinen, Vesa-Petteri Kouri, Eemeli JämsenTian-Fang, Li Jami Mandelin Yrjö T. Konttinen. The response of macrophages to titanium particles is determined by macrophage polarization. Acta Biomaterialia 9, 9229–9240 (2013).
[32]. Wynn, T. A. & Vannella, K. M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity 44, 450–462 (2016).
[33]. Vasconcelos, D.M., Ribeiro-da-Silva, M., Mateus, A. et al. Immune response and innervation signatures in aseptic hip implant loosening. J Transl Med 14, 205 (2016).
[34]. Koulouvaris P, Ly K, Ivashkiv LB, Bostrom MP, Nestor BJ, Sculco TP, Purdue PE. Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis. J Orthop Res 26, (1):106-16 (2008).
[35]. Kumar S, Meena R, Paulraj R. Role of Macrophage (M1 and M2) in Titanium-Dioxide Nanoparticle-Induced Oxidative Stress and Inflammatory Response in Rat. Appl Biochem Biotechnol 180, (7):1257-1275 (2016).
[36]. Dhupal, Madhusmita; Oh, Jae-Min; Tripathy, Dipti Ranjan; Kim, Soo-Ki; Koh, Sang Baek; Park, Kyu-Sang. Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. International Journal of Nanomedicine 13, (5), 6735–6750 (2018).
[37]. Théry et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles 8, (1)-1535750 (2019).
[38]. Mehmet Asim Bilen, Tianhong Pan, Yu-Chen Lee, Song-Chang Lin, Guoyu Yu, Jing Pan, David Hawke, Bih-Fang Pan, Jody Vykoukal, Kavanya Gray, Robert L Satcher, Gary E. Gallick, Li-Yuan Yu-Lee, and Sue-Hwa Lin. Proteomics Profiling of Exosomes from Primary Mouse Osteoblasts under Proliferation versus Mineralization Conditions and Characterization of Their Uptake into Prostate Cancer Cells. J Proteome Res 16, 2709–2728 (2017).
[39]. Dilshan S. Harischandra, Shivani Ghaisas, Dharmin Rokad, Anumantha G. Kanthasamy. Exosomes in Toxicology: Relevance to Chemical Exposure and Pathogenesis of Environmentally Linked Diseases. Toxicol Sci 158, 3-13 (2017).
[40]. Moon PG, Lee JE, Cho YE, Lee SJ, Chae YS, Jung JH, Kim IS, Park HY, Baek MC. Fibronectin on circulating extracellular vesicles as a liquid biopsy to detect breast cancer. Oncotarget 7, 40189–40199 (2016).
[41]. Holliday, L. S., Faria, L. P. De & Jr, W. J. R. Actin and Actin-Associated Proteins in Extracellular Vesicles Shed by Osteoclasts. Int J Mol Sci 21, 1-158 (2019).
[42]. Sonia A. Melo, Linda B. Luecke, Christoph Kahlert, Agustin F. Fernandez, Seth T. Gammon, Judith Kaye, Valerie S. LeBleu, Elizabeth A. Mittendorf, Juergen Weitz, Nuh Rahbari, Christoph Reissfelder, Christian Pilarsky, Mario F. Fraga, David Piwnica-Worms & Raghu Kalluri. Glypican-1 Identifies Cancer Exosomes and Detects Early Pancreatic Cancer, Nature 9, 177-82 (2015).
[43]. Juliana P. Vago, Michelle A. Sugimoto, Kátia M. Lima, Graziele L. Negreiros-Lima, Nagyung Baik, Mauro M. Teixeira, Mauro Perretti, Robert J. Parmer, Lindsey A. Miles, and Lirlândia P. Sousa. Plasminogen and the Plasminogen Receptor , Plg-R KT, Regulate Macrophage Phenotypic , and Functional Changes. Front Immunol 10, 1–16 (2019).
[44]. Géza Pap, René Eberhardt, C.Röcken,W.Nebelung, H.W.Neumann, A.Roessner. Expression of Stromelysin and Urokinase Type Plasminogen Activator Protein in Resection Specimens and Biopsies at Different Stages of Osteoarthritis of the Knee. Pathol. Res. Pract 49, 219-226 (2000).
[45]. Syggelos, S. A., Aletras, A. J., Smirlaki, I. & Skandalis, S. S. Extracellular Matrix Degradation and Tissue Remodeling in Periprosthetic Loosening and Osteolysis : Focus on Matrix Metalloproteinases , Their Endogenous Tissue Inhibitors , and the Proteasome. Biomed Res Int 1, 230805 (2013).
[46]. Qin Shi, Daniel Lajeunesse, Pascal Reboul, Johanne Martel-Pelletier, Jean-Pierre Pelletier, Faramaze Dehnade and Julio C Fernandes. Metabolic Activity of Osteoblasts from Periprosthetic Trabecular Bone in Failed Total Hip Arthroplasties and Osteoarthritis as Markers of Osteolysis and Loosening. J Rheumatol 29,1437-1445 (2002).
[47]. Nordsletten, L. et al. The plasminogen activation system is upregulated in loosening of total hip prostheses 6470, (2009).
[48]. Daci, E., Udagawa, N., Martin, T. J., Bouillon, R. & Carmeliet, G. The Role of the Plasminogen System in Bone Resorption In Vitro. J Bone Miner Res 14, 946-52 (1999).
[49]. Jin, T., Tarkowski, A., Carmeliet, P. & Bokarewa, M. Urokinase, a constitutive component of the inflamed synovial fluid , induces arthritis. Arthritis Res Ther 5, 9–17 (2003).
[50].Emanuela Galliera, Lorenzo Drago, MonicaGioia Marazzi, Carlo Romano, Christian Vassena, MassimilianoM. CorsiRomanelli. Clinica Chimica Acta Soluble urokinase-type plasminogen activator receptor (suPAR) as new biomarker of the prosthetic joint infection : Correlation with in flammatory cytokines. Clin Chim Acta 441, 23–28 (2015).
[51]. RB Raggam, J. Wagner, F. Prüller, A. Grisold, E. Leitner I. Zollner-Schwetz, T. Valentin, R. Krause M. Hoenigl. Soluble urokinase plasminogen activator receptor predicts mortality in patients with systemic inflammatory response syndrome. J. Intern. Med 276, 651-658 (2014).
[52]. Rosso, M. Del, Fibbi, G., Pucci, M., Margheri, F. & Serratì, S. The plasminogen activation system in inflammation. Front Biosci 1, 4667–4686 (2008).