1. Koch RM, Swinger LA, Chambers D, Gregory KE. Efficiency of feed use in beef cattle. J Anim Sci 1963;22:486-94.
2. Cai W, Casey DS, Dekkers JC. Selection response and genetic parameters for residual feed intake in Yorkshire swine. J Anim Sci. 2008;86:287-98.
3. Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, et al. Review: divergent selection for residual feed intake in the growing pig. Animal. 2017;11:1427-39.
4. Gondret F, Vincent A, Houee-Bigot M, Siegel A, Lagarrigue S, Causeur D, et al. A transcriptome multi-tissue analysis identifies biological pathways and genes associated with variations in feed efficiency of growing pigs. BMC Genomics. 2017;18:244.
5. Horodyska J, Reyer H, Wimmers K, Trakooljul N, Lawlor P, Hamill RM. Transcriptome analysis of adipose tissue from pigs divergent in feed efficiency reveals alteration in gene networks related to adipose growth, lipid metabolism, extracellular matrix, and immune response. Molecular Genetics and Genomics. 2018. Nov 27. doi: 10.1007/s00438-018-1515-5. [Epub ahead of print]
6. Reyer H, Oster M, Magowan E, Dannenberger D, Ponsuksili S, Wimmers K. Strategies towards improved feed efficiency in pigs comprise molecular shifts in hepatic lipid and carbohydrate metabolism. Int J Mol Sci. 2017;18:pii: E1674.
7. Reyer H, Oster M, Magowan E, Muráni E, Sauerwein H, Dannenberger D et al. Feed-efficient pigs exhibit molecular patterns allowing a timely circulation of hormones and nutrients. Physiol Genomics. 2018;50:726-734.
8. Vincent A, Louveau I, Gondret F, Tréfeu C, Gilbert H, Lefaucheur L. Divergent selection for residual feed intake affects the transcriptomic and proteomic profiles of pig skeletal muscle12. Journal of Animal Science 2015;93:2745-58.
9. Horodyska J, Wimmers K, Reyer H, Trakooljul N, Mullen A M, Lawlor PG et al. RNA-seq of muscle from pigs divergent in feed efficiency and product quality identifies differences in immune response, growth, and macronutrient and connective tissue metabolism. BMC Genomics. 2018;19:791.
10. Jing L, Hou Y, Wu H, Miao Y, Li X, Cao J et al. Transcriptome analysis of mRNA and miRNA in skeletal muscle indicates an important network for differential Residual Feed Intake in pigs. Sci Rep. 2015;5:11953.
11. Ramayo-Caldas Y, Ballester M, Sánchez JP, GonzálezRodríguez O, Revilla M, Reyer H et al. Integrative approach using liver and duodenum RNA-Seq data identifies candidate genes and pathways associated with feed efficiency in pigs. Sci Rep. 2018;8:558.
12. Xu Y, Qi X, Hu M, Lin R, Hou Y, Wang Z, Zhou H, Zhao Y, Luan Y, Zhao S, Li X. Transcriptome Analysis of Adipose Tissue Indicates That the cAMP Signaling Pathway Affects the Feed Efficiency of Pigs. Genes (Basel). 2018;9,pii: E336.
13. Salleh SM, Mazzoni G, Løvendahl P, Kadarmideen HN. Gene co-expression networks from RNA sequencing of dairy cattle identifies genes and pathways affecting feed efficiency. BMC Bioinformatics. 2018;19:513.
14. Yao C, Spurlock DM, Armentano LE, Page CD Jr, VandeHaar MJ, Bickhart DM et al. Random Forests approach for identifying additive and epistatic single nucleotide polymorphisms associated with residual feed intake in dairy cattle. J Dairy Sci. 2013;96:6716-29.
15. Yao C, Zhu X, Weigel KA. 2016. Semi-supervised learning for genomic prediction of novel traits with small reference: an application to residual feed intake in dairy cattle. Genet Sel Evol. 2016;48:84.
16. Piles M, Fernandez‑Lozano C, Velasco‑Galilea M, González‑Rodríguez O, Sánchez JP, Torrallardona D et al. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs. Genet Sel Evol. 2019;51:10.
17. Lee HC, Yoon SB, Yang SM, Kim WH, Ryu HG, Jung CW et al. Prediction of Acute Kidney Injury after Liver Transplantation: Machine Learning Approaches vs. Logistic Regression Model. J Clin Med. 2018;7:pii: E428.
18. Godinho RM, Bastiaansen JWM, Sevillano CA, Silva FF, Guimarães SEF, Bergsma R. Genotype by feed interaction for feed efficiency and growth performance traits in pigs. J Anim Sci. 2018;96:4125-35.
19. Clarke LA, Botelho HM, Sousa L, Falcao AO, Amaral MD. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators. Genomics. 2015;106:268-77.
20. Ewald DA, Malajian D, Krueger JG, Workman CT, Wang T, Tian S, et al. Meta-analysis derived atopic dermatitis (MADAD) transcriptome defines a robust AD signature highlighting the involvement of atherosclerosis and lipid metabolism pathways. BMC Med Genomics. 2015;8:60.
21. Gondret F, Louveau I, Mourot J, Duclos MJ, Lagarrigue S, Gilbert H, et al. Dietary energy sources affect the partition of body lipids and the hierarchy of energy metabolic pathways in growing pigs differing in feed efficiency. J Anim Sci. 2014;92:4865-77.
22. Le Naou T, Le Floc'h N, Louveau I, Gilbert H, Gondret F. Metabolic changes and tissue responses to selection on residual feed intake in growing pigs. J Anim Sci. 2012;90:4771-80.
23. Nazarov PV, Muller A, Kaoma T, Nicot N, Maximo C, Birembaut P et al. RNA sequencing and transcriptome arrays analyses show opposing results for alternative splicing in patient derived samples. BMC Genomics. 2017;18:443.
24. Rohart F, Paris A, Laurent B, Canlet C, Molina J, Mercat MJ et al. Phenotypic prediction based on metabolomic data for growing pigs from three main European breeds. J Anim Sci. 2012;90:4729-40.
25. Horodyska J, Oster M, Reyer H, Mullen AM, Lawlor PG, Wimmers K et al. Analysis of meat quality traits and gene expression profiling of pigs divergent in residual feed intake. Meat Sci. 2018;137,265–74.
26. Zhou N, Lee WR, Abasht B. Messenger RNA sequencing and pathway analysis provide novel insights into the biological basis of chickens' feed efficiency. BMC Genomics. 2015;16:195.
27. Sautron V, Terenina E, Gress L, Lippi Y, Billon Y, Larzul C et al. Time course of the response to ACTH in pig: biological and transcriptomic study. BMC Genomics. 2015 ;16:961.
28. Kelly AK, Lawrence P, Earley B, Kenny DA, McGee M. Stress and immunological response of heifers divergently ranked for residual feed intake following an adrenocorticotropic hormone challenge. J Anim Sci Biotechnol. 2017;8:65.
29. Knott S, Cummins L, Dunshea F, Leury B. Rams with poor feed efficiency are highly responsive to an exogenous adrenocorticotropin hormone (ACTH) challenge. Domest Anim Endocrinol. 2008;34:261–8.
30. Nezer C, Collette C, Moreau L, Brouwers B, Kim JJ, Giuffra E et al. Haplotype sharing refines the location of an imprinted quantitative trait locus with major effect on muscle mass to a 250-kb chromosome segment containing the porcine IGF2 gene. Genetics. 2003;165:277-85.
31. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L et al. A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature. 2003;425:832-6.
32. Sherman EL, Nkrumah JD, Murdoch BM, Li C, Wang Z, Fu A et al. Polymorphisms and haplotypes in the bovine neuropeptide Y, growth hormone receptor, ghrelin, insulin-like growth factor 2, and uncoupling proteins 2 and 3 genes and their associations with measures of growth, performance, feed efficiency, and carcass merit in beef cattle. J Anim Sci. 2008;86:1-16.
33. Friedman JH. Greedy function approximation: A gradient boosting machine. The Annals of Statistics 2001;29:1189-1232.
34. Friedman JH. Stochastic gradient boosting. Computational Statistics & Data Analysis 2002;38:367-78.
35. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York: Springer. 2009;337–84. ISBN 0-387-84857-6.
36. Causeur D, Daumas G, Dhorne T, Engel B, Fonti Furnols M, Højsgaard S. Statistical handbook for assessing pig classification methods: Recommendations from the “EUPIGCLASS” project group. EC working document. 2003;132 p.
37. Huang DW, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J et al.. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biology. 2007;8:R183.