1 Baquero, F., Lanza, V. F., Baquero, M. R., Del Campo, R. & Bravo-Vazquez, D. A. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front Microbiol 10, 2261, doi:10.3389/fmicb.2019.02261 (2019).
2 Mathavan, I. & Beis, K. The role of bacterial membrane proteins in the internalization of microcin MccJ25 and MccB17. Biochem Soc Trans 40, 1539-1543, doi:10.1042/BST20120176 (2012).
3 Garcia-Bayona, L. & Comstock, L. E. Bacterial antagonism in host-associated microbial communities. Science 361, doi:10.1126/science.aat2456 (2018).
4 Chassaing, B. & Cascales, E. Antibacterial Weapons: Targeted Destruction in the Microbiota. Trends Microbiol 26, 329-338, doi:10.1016/j.tim.2018.01.006 (2018).
5 Aoki, S. K. et al. A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature 468, 439-442, doi:10.1038/nature09490 (2010).
6 Ruhe, Z. C. et al. Programmed Secretion Arrest and Receptor-Triggered Toxin Export during Antibacterial Contact-Dependent Growth Inhibition. Cell 175, 921-933 e914, doi:10.1016/j.cell.2018.10.033 (2018).
7 Whitney, J. C. et al. An interbacterial NAD(P)(+) glycohydrolase toxin requires elongation factor Tu for delivery to target cells. Cell 163, 607-619, doi:10.1016/j.cell.2015.09.027 (2015).
8 Trunk, K. et al. The type VI secretion system deploys antifungal effectors against microbial competitors. Nat Microbiol 3, 920-931, doi:10.1038/s41564-018-0191-x (2018).
9 Cianfanelli, F. R., Monlezun, L. & Coulthurst, S. J. Aim, Load, Fire: The Type VI Secretion System, a Bacterial Nanoweapon. Trends Microbiol 24, 51-62, doi:10.1016/j.tim.2015.10.005 (2016).
10 Basler, M., Ho, B. T. & Mekalanos, J. J. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152, 884-894, doi:10.1016/j.cell.2013.01.042 (2013).
11 Wang, J. et al. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat Microbiol 2, 1507-1512, doi:10.1038/s41564-017-0020-7 (2017).
12 Aubert, D. F. et al. A Burkholderia Type VI Effector Deamidates Rho GTPases to Activate the Pyrin Inflammasome and Trigger Inflammation. Cell Host Microbe 19, 664-674, doi:10.1016/j.chom.2016.04.004 (2016).
13 Chen, H. et al. The Bacterial T6SS Effector EvpP Prevents NLRP3 Inflammasome Activation by Inhibiting the Ca(2+)-Dependent MAPK-Jnk Pathway. Cell Host Microbe 21, 47-58, doi:10.1016/j.chom.2016.12.004 (2017).
14 Ledvina, H. E. et al. A Phosphatidylinositol 3-Kinase Effector Alters Phagosomal Maturation to Promote Intracellular Growth of Francisella. Cell Host Microbe 24, 285-295 e288, doi:10.1016/j.chom.2018.07.003 (2018).
15 LaCourse, K. D. et al. Conditional toxicity and synergy drive diversity among antibacterial effectors. Nat Microbiol 3, 440-446, doi:10.1038/s41564-018-0113-y (2018).
16 Hachani, A., Wood, T. E. & Filloux, A. Type VI secretion and anti-host effectors. Curr Opin Microbiol 29, 81-93, doi:10.1016/j.mib.2015.11.006 (2016).
17 Russell, A. B., Peterson, S. B. & Mougous, J. D. Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12, 137-148, doi:10.1038/nrmicro3185 (2014).
18 Ho, B. T., Dong, T. G. & Mekalanos, J. J. A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15, 9-21, doi:10.1016/j.chom.2013.11.008 (2014).
19 Si, M. et al. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis. Proc Natl Acad Sci U S A 114, E2233-E2242, doi:10.1073/pnas.1614902114 (2017).
20 Si, M. et al. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition. Cell Rep 20, 949-959, doi:10.1016/j.celrep.2017.06.081 (2017).
21 Ting, S. Y. et al. Bifunctional Immunity Proteins Protect Bacteria against FtsZ-Targeting ADP-Ribosylating Toxins. Cell 175, 1380-1392 e1314, doi:10.1016/j.cell.2018.09.037 (2018).
22 Burkinshaw, B. J. et al. A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone-co-chaperone complex. Nat Microbiol 3, 632-640, doi:10.1038/s41564-018-0144-4 (2018).
23 Whitney, J. C. et al. Identification, structure, and function of a novel type VI secretion peptidoglycan glycoside hydrolase effector-immunity pair. J Biol Chem 288, 26616-26624, doi:10.1074/jbc.M113.488320 (2013).
24 English, G. et al. New secreted toxins and immunity proteins encoded within the Type VI secretion system gene cluster of Serratia marcescens. Mol Microbiol 86, 921-936, doi:10.1111/mmi.12028 (2012).
25 Zimmermann, L. et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol 430, 2237-2243, doi:10.1016/j.jmb.2017.12.007 (2018).
26 Hood, R. D. et al. A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7, 25-37, doi:10.1016/j.chom.2009.12.007 (2010).
27 Russell, A. B. et al. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475, 343-347, doi:10.1038/nature10244 (2011).
28 MacIntyre, D. L., Miyata, S. T., Kitaoka, M. & Pukatzki, S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A 107, 19520-19524, doi:10.1073/pnas.1012931107 (2010).
29 Quentin, D. et al. Mechanism of loading and translocation of type VI secretion system effector Tse6. Nat Microbiol 3, 1142-1152, doi:10.1038/s41564-018-0238-z (2018).
30 White, P. et al. Exploitation of an iron transporter for bacterial protein antibiotic import. Proc Natl Acad Sci U S A 114, 12051-12056, doi:10.1073/pnas.1713741114 (2017).
31 Cascales, E. et al. Colicin biology. Microbiol Mol Biol Rev 71, 158-229, doi:10.1128/MMBR.00036-06 (2007).
32 Housden, N. G. et al. Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. Science 340, 1570-1574, doi:10.1126/science.1237864 (2013).
33 Jakes, K. S. & Cramer, W. A. Border crossings: colicins and transporters. Annu Rev Genet 46, 209-231, doi:10.1146/annurev-genet-110711-155427 (2012).
34 Sana, T. G. et al. Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A 113, E5044-5051, doi:10.1073/pnas.1608858113 (2016).
35 Anderson, M. C., Vonaesch, P., Saffarian, A., Marteyn, B. S. & Sansonetti, P. J. Shigella sonnei Encodes a Functional T6SS Used for Interbacterial Competition and Niche Occupancy. Cell Host Microbe 21, 769-776 e763, doi:10.1016/j.chom.2017.05.004 (2017).
36 Zhao, W., Caro, F., Robins, W. & Mekalanos, J. J. Antagonism toward the intestinal microbiota and its effect on Vibrio cholerae virulence. Science 359, 210-213, doi:10.1126/science.aap8775 (2018).
37 Coyne, M. J. & Comstock, L. E. Type VI Secretion Systems and the Gut Microbiota. Microbiol Spectr 7, doi:10.1128/microbiolspec.PSIB-0009-2018 (2019).
38 Mueller, E. A. & Levin, P. A. Evolving to End a Toxic Relationship: ADP Ribosylation in Interbacterial Warfare. Cell 175, 1182-1184, doi:10.1016/j.cell.2018.10.051 (2018).
39 Guo, Y. et al. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res 42, 6448-6462, doi:10.1093/nar/gku279 (2014).
40 Zhang, W. et al. A type VI secretion system regulated by OmpR in Yersinia pseudotuberculosis functions to maintain intracellular pH homeostasis. Environ Microbiol 15, 557-569, doi:10.1111/1462-2920.12005 (2013).
41 Zhang, L. et al. The Catabolite Repressor/Activator Cra Is a Bridge Connecting Carbon Metabolism and Host Colonization in the Plant Drought Resistance-Promoting Bacterium Pantoea alhagi LTYR-11Z. Appl Environ Microbiol 84, doi:10.1128/AEM.00054-18 (2018).
42 Jiang, Y. et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81, 2506-2514, doi:10.1128/AEM.04023-14 (2015).
43 Shen, X. et al. Targeting eEF1A by a Legionella pneumophila effector leads to inhibition of protein synthesis and induction of host stress response. Cell Microbiol 11, 911-926, doi:10.1111/j.1462-5822.2009.01301.x (2009).
44 Ouellette, S. P., Karimova, G., Davi, M. & Ladant, D. Analysis of Membrane Protein Interactions with a Bacterial Adenylate Cyclase-Based Two-Hybrid (BACTH) Technique. Curr Protoc Mol Biol 118, 20 12 21-20 12 24, doi:10.1002/cpmb.36 (2017).
45 Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95, 5752-5756, doi:10.1073/pnas.95.10.5752 (1998).
46 Xu, S. et al. FliS modulates FlgM activity by acting as a non-canonical chaperone to control late flagellar gene expression, motility and biofilm formation in Yersinia pseudotuberculosis. Environ Microbiol 16, 1090-1104, doi:10.1111/1462-2920.12222 (2014).
47 Xu, L. et al. Inhibition of host vacuolar H+-ATPase activity by a Legionella pneumophila effector. PLoS Pathog 6, e1000822, doi:10.1371/journal.ppat.1000822 (2010).
48 Pissaridou, P. et al. The Pseudomonas aeruginosa T6SS-VgrG1b spike is topped by a PAAR protein eliciting DNA damage to bacterial competitors. Proc Natl Acad Sci U S A 115, 12519-12524, doi:10.1073/pnas.1814181115 (2018).
49 Wang, T. et al. A type VI secretion system delivers a cell wall amidase to target bacterial competitors. Mol Microbiol, doi:10.1111/mmi.14513 (2020).
50 Miller, R. G., Tate, C. R. & Mallinson, E. T. Improved XLT4 Agar: Small Addition of Peptone to Promote Stronger Production of Hydrogen-Sulfide by Salmonellae. Journal of food protection 58, 115-119, doi:10.4315/0362-028x-58.1.115 (1995).