Aalipour F, Mirlohi M, Jalali M, Azadbakht L (2015) Dietary exposure to tetracycline residues through milk consumption in Iran. J Environ Health Sci Eng 13:80. https://doi.org/10.1186/s40201-015-0235-6
Beyene T (2015) Veterinary Drug Residues in Food-animal Products: Its Risk Factors and Potential Effects on Public Health. J Vet Sci Technol 07: https://doi.org/10.4172/2157-7579.1000285
Bhat AM, Soodan JS, Singh R, et al (2017) Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens. Vet World 10:984–989. https://doi.org/10.14202/vetworld.2017.984-989
Cháfer-Pericás C, Maquieira Á, Puchades R (2010) Fast screening methods to detect antibiotic residues in food samples. TrAC Trends Anal Chem 29:1038–1049. https://doi.org/10.1016/j.trac.2010.06.004
Chowdhury J, Mandal TK, Mondal S (2020) Genotoxic impact of emerging contaminant amoxicillin residue on zebra fish (Danio rerio) embryos. Heliyon 6:e05379. https://doi.org/10.1016/j.heliyon.2020.e05379
Das N, Madhavan J, Selvi A, Das D (2019) An overview of cephalosporin antibiotics as emerging contaminants: a serious environmental concern. 3 Biotech 9:231. https://doi.org/10.1007/s13205-019-1766-9
D’Costa AH, Shyama SK, Praveen Kumar MK, Fernandes TM (2018) Induction of DNA damage in the peripheral blood of zebrafish (Danio rerio) by an agricultural organophosphate pesticide, monocrotophos. Int Aquat Res 10:243–251. https://doi.org/10.1007/s40071-018-0201-x
Diwan V, Hanna N, Purohit M, et al (2018) Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. Int J Environ Res Public Health 15:1281. https://doi.org/10.3390/ijerph15061281
Elizalde-Velázquez A, Gómez-Oliván LM, Galar-Martínez M, et al (2016) Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. In: Larramendy M, Soloneski S (eds) Environmental Health Risk - Hazardous Factors to Living Species. InTech
Feng L, Cheng Y, Zhang Y, et al (2020) Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River. Environ Res 185:109386. https://doi.org/10.1016/j.envres.2020.109386
Frenzilli G, Lenzi P, Scarcelli V, et al (2004) Effects of loud noise exposure on DNA integrity in rat adrenal gland. Environ Health Perspect 112:1671–1672. https://doi.org/10.1289/ehp.7249
Graham JP, Boland JJ, Silbergeld E (2007) Growth Promoting Antibiotics in Food Animal Production: An Economic Analysis. Public Health Rep 122:79–87. https://doi.org/10.1177/003335490712200111
Hassan MM (2014) Antimicrobial Resistance Pattern against E. coli and Salmonella in Layer Poultry. Res J Vet Pract 2:30–35. https://doi.org/10.14737/journal.rjvp/2014/2.2.30.35
Ibrahim FA, Nasr JJM (2014) Direct determination of ampicillin and amoxicillin residues in food samples after aqueous SDS extraction by micellar liquid chromatography with UV detection. Anal Methods 6:1523. https://doi.org/10.1039/c3ay42011f
Kraemer SA, Ramachandran A, Perron GG (2019) Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 7:180. https://doi.org/10.3390/microorganisms7060180
Kurjogi M, Issa Mohammad YH, Alghamdi S, et al (2019) Detection and determination of stability of the antibiotic residues in cow’s milk. PLOS ONE 14:e0223475. https://doi.org/10.1371/journal.pone.0223475
Meletiadis J, Turlej-Rogacka A, Lerner A, et al (2017) Amplification of Antimicrobial Resistance in Gut Flora of Patients Treated with Ceftriaxone. Antimicrob Agents Chemother 61:e00473-17, e00473-17. https://doi.org/10.1128/AAC.00473-17
Mpatswenumugabo JP, Bebora LC, Gitao GC, et al (2017) Prevalence of Subclinical Mastitis and Distribution of Pathogens in Dairy Farms of Rubavu and Nyabihu Districts, Rwanda. J Vet Med 2017:1–8. https://doi.org/10.1155/2017/8456713
Nisha A (2008) Antibiotic Residues - A Global Health Hazard. Vet World 2:375. https://doi.org/10.5455/vetworld.2008.375-377
Nishimura Y, Inoue A, Sasagawa S, et al (2016) Using zebrafish in systems toxicology for developmental toxicity testing: Zebrafish and developmental toxicity. Congenit Anom 56:18–27. https://doi.org/10.1111/cga.12142
Olive PL, Durand RE (2005) Heterogeneity in DNA damage using the comet assay. Cytom Part J Int Soc Anal Cytol 66:1–8. https://doi.org/10.1002/cyto.a.20154
Oliveira R, McDonough S, Ladewig JCL, et al (2013) Effects of oxytetracycline and amoxicillin on development and biomarkers activities of zebrafish (Danio rerio). Environ Toxicol Pharmacol 36:903–912. https://doi.org/10.1016/j.etap.2013.07.019
Ostling O, Johanson KJ (1984) Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun 123:291–298. https://doi.org/10.1016/0006-291x(84)90411-x
Ray P, Knowlton KF, Shang C, Xia K (2014) Development and Validation of a UPLC-MS/MS Method to Monitor Cephapirin Excretion in Dairy Cows following Intramammary Infusion. PLoS ONE 9:e112343. https://doi.org/10.1371/journal.pone.0112343
Rocco L, Peluso C, Stingo V (2012) Micronucleus test and comet assay for the evaluation of zebrafish genomic damage induced by erythromycin and lincomycin. Environ Toxicol 27:598–604. https://doi.org/10.1002/tox.20685
Ruegg PL (2017) A 100-Year Review: Mastitis detection, management, and prevention. J Dairy Sci 100:10381–10397. https://doi.org/10.3168/jds.2017-13023
Sachi S, Ferdous J, Sikder M, Hussani S (2019) Antibiotic residues in milk: Past, present, and future. J Adv Vet Anim Res 6:315. https://doi.org/10.5455/javar.2019.f350
Schenck FJ, Callery PS (1998) Chromatographic methods of analysis of antibiotics in milk. J Chromatogr A 812:99–109. https://doi.org/10.1016/s0021-9673(97)01291-0
Seymour EH, Jones GM, McGilliard ML (1988) Persistence of residues in milk following antibiotic treatment of dairy cattle. J Dairy Sci 71:2292–2296. https://doi.org/10.3168/jds.S0022-0302(88)79806-9
Shapiro RS (2015) Antimicrobial-Induced DNA Damage and Genomic Instability in Microbial Pathogens. PLOS Pathog 11:e1004678. https://doi.org/10.1371/journal.ppat.1004678
Sileshi A, Tenna A, Feyissa M, Shibeshi W (2016) Evaluation of ceftriaxone utilization in medical and emergency wards of Tikur Anbessa specialized hospital: a prospective cross-sectional study. BMC Pharmacol Toxicol 17:7. https://doi.org/10.1186/s40360-016-0057-x
Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014-4827(88)90265-0
Sonda TB, Horumpende PG, Kumburu HH, et al (2019) Ceftriaxone use in a tertiary care hospital in Kilimanjaro, Tanzania: A need for a hospital antibiotic stewardship programme. PLOS ONE 14:e0220261. https://doi.org/10.1371/journal.pone.0220261
Speit G, Rothfuss A (2012) The comet assay: a sensitive genotoxicity test for the detection of DNA damage and repair. Methods Mol Biol Clifton NJ 920:79–90. https://doi.org/10.1007/978-1-61779-998-3_6
Teuber M (2001) Veterinary use and antibiotic resistance. Curr Opin Microbiol 4:493–499. https://doi.org/10.1016/s1369-5274(00)00241-1
Van den Meersche T, Pamel EV, Poucke CV, et al (2016) Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. J Chromatogr A 1429:248–257. https://doi.org/10.1016/j.chroma.2015.12.046
Ying G-G, He L-Y, Ying AJ, et al (2017) China Must Reduce Its Antibiotic Use. Environ Sci Technol 51:1072–1073. https://doi.org/10.1021/acs.est.6b06424
Zhang Q, Cheng J, Xin Q (2015) Effects of tetracycline on developmental toxicity and molecular responses in zebrafish (Danio rerio) embryos. Ecotoxicology 24:707–719. https://doi.org/10.1007/s10646-015-1417-9
Zhao Y, Liang X, Wang Y, et al (2018) Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi2WO6/g-C3N4 photocatalyst. J Colloid Interface Sci 523:7–17. https://doi.org/10.1016/j.jcis.2018.03.078