1.Goldberg AD, Allis CD, Bernstein E: Epigenetics: a landscape takes shape. Cell 2007, 128(4):635–638.
2.Huang H, Sabari BR, Garcia BA, Allis CD, Zhao Y: SnapShot: histone modifications. Cell 2014, 159(2):458–458 e451.
3.Lawrence M, Daujat S, Schneider R: Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends in genetics: TIG 2016, 32(1):42–56.
4.Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293(5532):1074–1080.
5.Strahl BD, Allis CD: The language of covalent histone modifications. Nature 2000, 403(6765):41–45.
6.Liu C, Lu F, Cui X, Cao X: Histone methylation in higher plants. Annual review of plant biology 2010, 61:395–420.
7.Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G, Reuter G: The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3–9 combines domains of antagonistic regulators of homeotic gene complexes. The EMBO journal 1994, 13(16):3822–3831.
8.Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y: Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Current biology: CB 2002, 12(12):1052–1058.
9.Zhang Y, Reinberg D: Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & development 2001, 15(18):2343–2360.
10.Ng DW, Wang T, Chandrasekharan MB, Aramayo R, Kertbundit S, Hall TC: Plant SET domain-containing proteins: structure, function and regulation. Biochimica et biophysica acta 2007, 1769(5–6):316–329.
11.Huang Y, Liu C, Shen WH, Ruan Y: Phylogenetic analysis and classification of the Brassica rapa SET-domain protein family. BMC plant biology 2011, 11:175.
12.Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou MM: Epigenetic transcriptional repression of cellular genes by a viral SET protein. Nature cell biology 2008, 10(9):1114–1122.
13.Alvarez-Venegas R, Sadder M, Tikhonov A, Avramova Z: Origin of the bacterial SET domain genes: vertical or horizontal? Molecular biology and evolution 2007, 24(2):482–497.
14.Aravind L, Iyer LM: Provenance of SET-domain histone methyltransferases through duplication of a simple structural unit. Cell cycle 2003, 2(4):369–376.
15.Stephens RS, Kalman S, Lammel C, Fan J, Marathe R, Aravind L, Mitchell W, Olinger L, Tatusov RL, Zhao Q et al: Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 1998, 282(5389):754–759.
16.Alvarez-Venegas R: Bacterial SET domain proteins and their role in eukaryotic chromatin modification. Frontiers in genetics 2014, 5:65.
17.Pontvianne F, Blevins T, Pikaard CS: Arabidopsis Histone Lysine Methyltransferases. Advances in botanical research 2010, 53:1–22.
18.Aquea F, Vega A, Timmermann T, Poupin MJ, Arce-Johnson P: Genome-wide analysis of the SET DOMAIN GROUP family in grapevine. Plant cell reports 2011, 30(6):1087–1097.
19.Lei L, Zhou SL, Ma H, Zhang LS: Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa. BMC evolutionary biology 2012, 12:51.
20.Qian Y, Xi Y, Cheng B, Zhu S: Genome-wide identification and expression profiling of DNA methyltransferase gene family in maize. Plant cell reports 2014, 33(10):1661–1672.
21.Lu Z, Huang X, Ouyang Y, Yao J: Genome-wide identification, phylogenetic and co-expression analysis of OsSET gene family in rice. PloS one 2013, 8(6):e65426.
22.Aiese Cigliano R, Sanseverino W, Cremona G, Ercolano MR, Conicella C, Consiglio FM: Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles. BMC genomics 2013, 14:57.
23.Xu J, Xu H, Liu Y, Wang X, Xu Q, Deng X: Genome-wide identification of sweet orange (Citrus sinensis) histone modification gene families and their expression analysis during the fruit development and fruit-blue mold infection process. Frontiers in plant science 2015, 6:607.
24.Huang Y, Mo Y, Chen P, Yuan X, Meng F, Zhu S, Liu Z: Identification of SET Domain-Containing Proteins in Gossypium raimondii and Their Response to High Temperature Stress. Scientific reports 2016, 6:32729.
25.Yadav CB, Muthamilarasan M, Dangi A, Shweta S, Prasad M: Comprehensive analysis of SET domain gene family in foxtail millet identifies the putative role of SiSET14 in abiotic stress tolerance. Scientific reports 2016, 6:32621.
26.Peng M, Ying P, Liu X, Li C, Xia R, Li J, Zhao M: Genome-Wide Identification of Histone Modifiers and Their Expression Patterns during Fruit Abscission in Litchi. Frontiers in plant science 2017, 8:639.
27.Berr A, McCallum EJ, Alioua A, Heintz D, Heitz T, Shen WH: Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi. Plant physiology 2010, 154(3):1403–1414.
28.Berr A, McCallum EJ, Menard R, Meyer D, Fuchs J, Dong A, Shen WH: Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. The Plant cell 2010, 22(10):3232–3248.
29.Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJ: Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. The Plant cell 2009, 21(1):39–53.
30.Cazzonelli CI, Nisar N, Roberts AC, Murray KD, Borevitz JO, Pogson BJ: A chromatin modifying enzyme, SDG8, is involved in morphological, gene expression, and epigenetic responses to mechanical stimulation. Frontiers in plant science 2014, 5:533.
31.Dong G, Ma DP, Li J: The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis. Biochemical and biophysical research communications 2008, 373(4):659–664.
32.Sui P, Jin J, Ye S, Mu C, Gao J, Feng H, Shen WH, Yu Y, Dong A: H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. The Plant journal: for cell and molecular biology 2012, 70(2):340–347.
33.Palma K, Thorgrimsen S, Malinovsky FG, Fiil BK, Nielsen HB, Brodersen P, Hofius D, Petersen M, Mundy J: Autoimmunity in Arabidopsis acd11 is mediated by epigenetic regulation of an immune receptor. PLoS pathogens 2010, 6(10):e1001137.
34.Alvarez-Venegas R, Abdallat AA, Guo M, Alfano JR, Avramova Z: Epigenetic control of a transcription factor at the cross section of two antagonistic pathways. Epigenetics 2007, 2(2):106–113.
35.Ding Y, Lapko H, Ndamukong I, Xia Y, Al-Abdallat A, Lalithambika S, Sadder M, Saleh A, Fromm M, Riethoven JJ et al: The Arabidopsis chromatin modifier ATX1, the myotubularin-like AtMTM and the response to drought. Plant signaling & behavior 2009, 4(11):1049–1058.
36.Ding Y, Avramova Z, Fromm M: The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. The Plant journal: for cell and molecular biology 2011, 66(5):735–744.
37.van Dijk K, Ding Y, Malkaram S, Riethoven JJ, Liu R, Yang J, Laczko P, Chen H, Xia Y, Ladunga I et al: Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC plant biology 2010, 10:238.
38.Zong W, Zhong X, You J, Xiong L: Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant molecular biology 2013, 81(1–2):175–188.
39.Kwon CS, Lee D, Choi G, Chung WI: Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. The Plant journal: for cell and molecular biology 2009, 60(1):112–121.
40.Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, Hao S, Wang X, Yang S, Li Q et al: The Genome of Dendrobium officinale Illuminates the Biology of the Important Traditional Chinese Orchid Herb. Molecular plant 2015, 8(6):922–934.
41.Tang H, Zhao T, Sheng Y, Zheng T, Fu L, Zhang Y: Dendrobium officinale Kimura et Migo: A Review on Its Ethnopharmacology, Phytochemistry, Pharmacology, and Industrialization. Evidence-based complementary and alternative medicine: eCAM 2017, 2017:7436259.
42.Ng TB, Liu J, Wong JH, Ye X, Wing Sze SC, Tong Y, Zhang KY: Review of research on Dendrobium, a prized folk medicine. Applied microbiology and biotechnology 2012, 93(5):1795–1803.
43.Wu ZG, Jiang W, Chen SL, Mantri N, Tao ZM, Jiang CX: Insights from the Cold Transcriptome and Metabolome of Dendrobium officinale: Global Reprogramming of Metabolic and Gene Regulation Networks during Cold Acclimation. Frontiers in plant science 2016, 7:1653.
44.Zheng B, Chen X: Dynamics of histone H3 lysine 27 trimethylation in plant development. Current opinion in plant biology 2011, 14(2):123–129.
45.Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz EM, Coupland G: A Polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 1997, 386(6620):44–51.
46.Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB: Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 1998, 280(5362):446–450.
47.Kiyosue T, Ohad N, Yadegari R, Hannon M, Dinneny J, Wells D, Katz A, Margossian L, Harada JJ, Goldberg RB et al: Control of fertilization-independent endosperm development by the MEDEA polycomb gene in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 1999, 96(7):4186–4191.
48.Liu X, Zhou C, Zhao Y, Zhou S, Wang W, Zhou DX: The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time. Frontiers in plant science 2014, 5:591.
49.Liu X, Zhou S, Wang W, Ye Y, Zhao Y, Xu Q, Zhou C, Tan F, Cheng S, Zhou DX: Regulation of histone methylation and reprogramming of gene expression in the rice inflorescence meristem. The Plant cell 2015, 27(5):1428–1444.
50.Springer NM, Napoli CA, Selinger DA, Pandey R, Cone KC, Chandler VL, Kaeppler HF, Kaeppler SM: Comparative analysis of SET domain proteins in maize and Arabidopsis reveals multiple duplications preceding the divergence of monocots and dicots. Plant physiology 2003, 132(2):907–925.
51.Lee J, Yun JY, Zhao W, Shen WH, Amasino RM: A methyltransferase required for proper timing of the vernalization response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 2015, 112(7):2269–2274.
52.Sahr T, Adam T, Fizames C, Maurel C, Santoni V: O-carboxyl- and N-methyltransferases active on plant aquaporins. Plant & cell physiology 2010, 51(12):2092–2104.
53.Sun C, Fang J, Zhao T, Xu B, Zhang F, Liu L, Tang J, Zhang G, Deng X, Chen F et al: The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice. The Plant cell 2012, 24(8):3235–3247.
54.Cartagena JA, Matsunaga S, Seki M, Kurihara D, Yokoyama M, Shinozaki K, Fujimoto S, Azumi Y, Uchiyama S, Fukui K: The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Developmental biology 2008, 315(2):355–368.
55.Thorstensen T, Grini PE, Mercy IS, Alm V, Erdal S, Aasland R, Aalen RB: The Arabidopsis SET-domain protein ASHR3 is involved in stamen development and interacts with the bHLH transcription factor ABORTED MICROSPORES (AMS). Plant molecular biology 2008, 66(1–2):47–59.
56.Kumpf R, Thorstensen T, Rahman MA, Heyman J, Nenseth HZ, Lammens T, Herrmann U, Swarup R, Veiseth SV, Emberland G et al: The ASH1-RELATED3 SET-domain protein controls cell division competence of the meristem and the quiescent center of the Arabidopsis primary root. Plant physiology 2014, 166(2):632–643.
57.Berr A, Shafiq S, Pinon V, Dong A, Shen WH: The trxG family histone methyltransferase SET DOMAIN GROUP 26 promotes flowering via a distinctive genetic pathway. The Plant journal: for cell and molecular biology 2015, 81(2):316–328.
58.Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH: Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Molecular and cellular biology 2008, 28(4):1348–1360.
59.Liu B, Wei G, Shi J, Jin J, Shen T, Ni T, Shen WH, Yu Y, Dong A: SET DOMAIN GROUP 708, a histone H3 lysine 36-specific methyltransferase, controls flowering time in rice (Oryza sativa). The New phytologist 2016, 210(2):577–588.
60.Lee S, Fu F, Xu S, Lee SY, Yun DJ, Mengiste T: Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases. The Plant cell 2016, 28(7):1640–1661.
61.Li Y, Mukherjee I, Thum KE, Tanurdzic M, Katari MS, Obertello M, Edwards MB, McCombie WR, Martienssen RA, Coruzzi GM: The histone methyltransferase SDG8 mediates the epigenetic modification of light and carbon responsive genes in plants. Genome biology 2015, 16:79.
62.Zhao Z, Yu Y, Meyer D, Wu C, Shen WH: Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature cell biology 2005, 7(12):1256–1260.
63.Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R: Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. The Plant cell 2005, 17(12):3301–3310.
64.Grini PE, Thorstensen T, Alm V, Vizcay-Barrena G, Windju SS, Jorstad TS, Wilson ZA, Aalen RB: The ASH1 HOMOLOG 2 (ASHH2) histone H3 methyltransferase is required for ovule and anther development in Arabidopsis. PloS one 2009, 4(11):e7817.
65.Cazzonelli CI, Roberts AC, Carmody ME, Pogson BJ: Transcriptional control of SET DOMAIN GROUP 8 and CAROTENOID ISOMERASE during Arabidopsis development. Molecular plant 2010, 3(1):174–191.
66.Pien S, Fleury D, Mylne JS, Crevillen P, Inze D, Avramova Z, Dean C, Grossniklaus U: ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine 4 trimethylation. The Plant cell 2008, 20(3):580–588.
67.Saleh A, Alvarez-Venegas R, Yilmaz M, Le O, Hou G, Sadder M, Al-Abdallat A, Xia Y, Lu G, Ladunga I et al: The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. The Plant cell 2008, 20(3):568–579.
68.Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z: ATX–1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Current biology: CB 2003, 13(8):627–637.
69.Choi SC, Lee S, Kim SR, Lee YS, Liu C, Cao X, An G: Trithorax group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant physiology 2014, 164(3):1326–1337.
70.Jiang P, Wang S, Jiang H, Cheng B, Wu K, Ding Y: The COMPASS-Like Complex Promotes Flowering and Panicle Branching in Rice. Plant physiology 2018, 176(4):2761–2771.
71.Jiang P, Wang S, Zheng H, Li H, Zhang F, Su Y, Xu Z, Lin H, Qian Q, Ding Y: SIP1 participates in regulation of flowering time in rice by recruiting OsTrx1 to Ehd1. The New phytologist 2018.
72.Chen LQ, Luo JH, Cui ZH, Xue M, Wang L, Zhang XY, Pawlowski WP, He Y: ATX3, ATX4, and ATX5 Encode Putative H3K4 Methyltransferases and Are Critical for Plant Development. Plant physiology 2017, 174(3):1795–1806.
73.Jiang P, Wang S, Ikram AU, Xu Z, Jiang H, Cheng B, Ding Y: SDG721 and SDG705 are required for rice growth. Journal of integrative plant biology 2018, 60(7):530–535.
74.Berr A, Xu L, Gao J, Cognat V, Steinmetz A, Dong A, Shen WH: SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering. Plant physiology 2009, 151(3):1476–1485.
75.Yun JY, Tamada Y, Kang YE, Amasino RM: Arabidopsis trithorax-related3/SET domain GROUP2 is required for the winter-annual habit of Arabidopsis thaliana. Plant & cell physiology 2012, 53(5):834–846.
76.Pinon V, Yao X, Dong A, Shen WH: SDG2-Mediated H3K4me3 Is Crucial for Chromatin Condensation and Mitotic Division during Male Gametogenesis in Arabidopsis. Plant physiology 2017, 174(2):1205–1215.
77.Jacob Y, Feng S, LeBlanc CA, Bernatavichute YV, Stroud H, Cokus S, Johnson LM, Pellegrini M, Jacobsen SE, Michaels SD: ATXR5 and ATXR6 are H3K27 monomethyltransferases required for chromatin structure and gene silencing. Nature structural & molecular biology 2009, 16(7):763–768.
78.Jacob Y, Stroud H, Leblanc C, Feng S, Zhuo L, Caro E, Hassel C, Gutierrez C, Michaels SD, Jacobsen SE: Regulation of heterochromatic DNA replication by histone H3 lysine 27 methyltransferases. Nature 2010, 466(7309):987–991.
79.Jacob Y, Bergamin E, Donoghue MT, Mongeon V, LeBlanc C, Voigt P, Underwood CJ, Brunzelle JS, Michaels SD, Reinberg D et al: Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science 2014, 343(6176):1249–1253.
80.Ma Z, Castillo-Gonzalez C, Wang Z, Sun D, Hu X, Shen X, Potok ME, Zhang X: Arabidopsis Serrate Coordinates Histone Methyltransferases ATXR5/6 and RNA Processing Factor RDR6 to Regulate Transposon Expression. Developmental cell 2018, 45(6):769–784 e766.
81.Raynaud C, Sozzani R, Glab N, Domenichini S, Perennes C, Cella R, Kondorosi E, Bergounioux C: Two cell-cycle regulated SET-domain proteins interact with proliferating cell nuclear antigen (PCNA) in Arabidopsis. The Plant journal: for cell and molecular biology 2006, 47(3):395–407.
82.Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, Singh PB, Cheng X, Schubert I, Jenuwein T, Jacobsen SE: Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 2004, 112(6):308–315.
83.Li S, Liu L, Li S, Gao L, Zhao Y, Kim YJ, Chen X: SUVH1, a Su(var)3–9 family member, promotes the expression of genes targeted by DNA methylation. Nucleic acids research 2016, 44(2):608–620.
84.Zhao QQ, Lin RN, Li L, Chen S, He XJ: A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes. Journal of integrative plant biology 2018.
85.Qin FJ, Sun QW, Huang LM, Chen XS, Zhou DX: Rice SUVH histone methyltransferase genes display specific functions in chromatin modification and retrotransposon repression. Molecular plant 2010, 3(4):773–782.
86.Fischer A, Hofmann I, Naumann K, Reuter G: Heterochromatin proteins and the control of heterochromatic gene silencing in Arabidopsis. Journal of plant physiology 2006, 163(3):358–368.
87.Kuhlmann M, Mette MF: Developmentally non-redundant SET domain proteins SUVH2 and SUVH9 are required for transcriptional gene silencing in Arabidopsis thaliana. Plant molecular biology 2012, 79(6):623–633.
88.Naumann K, Fischer A, Hofmann I, Krauss V, Phalke S, Irmler K, Hause G, Aurich AC, Dorn R, Jenuwein T et al: Pivotal role of AtSUVH2 in heterochromatic histone methylation and gene silencing in Arabidopsis. The EMBO journal 2005, 24(7):1418–1429.
89.Johnson LM, Du J, Hale CJ, Bischof S, Feng S, Chodavarapu RK, Zhong X, Marson G, Pellegrini M, Segal DJ et al: SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 2014, 507(7490):124–128.
90.Johnson LM, Law JA, Khattar A, Henderson IR, Jacobsen SE: SRA-domain proteins required for DRM2-mediated de novo DNA methylation. PLoS genetics 2008, 4(11):e1000280.
91.Liu ZW, Shao CR, Zhang CJ, Zhou JX, Zhang SW, Li L, Chen S, Huang HW, Cai T, He XJ: The SET domain proteins SUVH2 and SUVH9 are required for Pol V occupancy at RNA-directed DNA methylation loci. PLoS genetics 2014, 10(1):e1003948.
92.Du J, Johnson LM, Groth M, Feng S, Hale CJ, Li S, Vashisht AA, Wohlschlegel JA, Patel DJ, Jacobsen SE: Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Molecular cell 2014, 55(3):495–504.
93.Ebbs ML, Bartee L, Bender J: H3 lysine 9 methylation is maintained on a transcribed inverted repeat by combined action of SUVH6 and SUVH4 methyltransferases. Molecular and cellular biology 2005, 25(23):10507–10515.
94.Ebbs ML, Bender J: Locus-specific control of DNA methylation by the Arabidopsis SUVH5 histone methyltransferase. The Plant cell 2006, 18(5):1166–1176.
95.Jackson JP, Lindroth AM, Cao X, Jacobsen SE: Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 2002, 416(6880):556–560.
96.Malagnac F, Bartee L, Bender J: An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation. The EMBO journal 2002, 21(24):6842–6852.
97.Rajakumara E, Law JA, Simanshu DK, Voigt P, Johnson LM, Reinberg D, Patel DJ, Jacobsen SE: A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes & development 2011, 25(2):137–152.
98.Zheng J, Chen F, Wang Z, Cao H, Li X, Deng X, Soppe WJ, Li Y, Liu Y: A novel role for histone methyltransferase KYP/SUVH4 in the control of Arabidopsis primary seed dormancy. The New phytologist 2012, 193(3):605–616.
99.Johnson LM, Bostick M, Zhang X, Kraft E, Henderson I, Callis J, Jacobsen SE: The SRA methyl-cytosine-binding domain links DNA and histone methylation. Current biology: CB 2007, 17(4):379–384.
100.Ding Y, Wang X, Su L, Zhai J, Cao S, Zhang D, Liu C, Bi Y, Qian Q, Cheng Z et al: SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. The Plant cell 2007, 19(1):9–22.
101.Han YF, Dou K, Ma ZY, Zhang SW, Huang HW, Li L, Cai T, Chen S, Zhu JK, He XJ: SUVR2 is involved in transcriptional gene silencing by associating with SNF2-related chromatin-remodeling proteins in Arabidopsis. Cell research 2014, 24(12):1445–1465.
102.Veiseth SV, Rahman MA, Yap KL, Fischer A, Egge-Jacobsen W, Reuter G, Zhou MM, Aalen RB, Thorstensen T: The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis. PLoS genetics 2011, 7(3):e1001325.
103.Rahman MA, Kristiansen PE, Veiseth SV, Andersen JT, Yap KL, Zhou MM, Sandlie I, Thorstensen T, Aalen RB: The arabidopsis histone methyltransferase SUVR4 binds ubiquitin via a domain with a four-helix bundle structure. Biochemistry 2014, 53(13):2091–2100.
104.Thorstensen T, Fischer A, Sandvik SV, Johnsen SS, Grini PE, Reuter G, Aalen RB: The Arabidopsis SUVR4 protein is a nucleolar histone methyltransferase with preference for monomethylated H3K9. Nucleic acids research 2006, 34(19):5461–5470.
105.Caro E, Stroud H, Greenberg MV, Bernatavichute YV, Feng S, Groth M, Vashisht AA, Wohlschlegel J, Jacobsen SE: The SET-domain protein SUVR5 mediates H3K9me2 deposition and silencing at stimulus response genes in a DNA methylation-independent manner. PLoS genetics 2012, 8(10):e1002995.
106.Krichevsky A, Gutgarts H, Kozlovsky SV, Tzfira T, Sutton A, Sternglanz R, Mandel G, Citovsky V: C2H2 zinc finger-SET histone methyltransferase is a plant-specific chromatin modifier. Developmental biology 2007, 303(1):259–269.
107.Zhang GQ, Liu KW, Li Z, Lohaus R, Hsiao YY, Niu SC, Wang JY, Lin YC, Xu Q, Chen LJ et al: The Apostasia genome and the evolution of orchids. Nature 2017, 549(7672):379–383.
108.Zou LH, Wan X, Deng H, Zheng BQ, Li BJ, Wang Y: RNA-seq transcriptomic profiling of crassulacean acid metabolism pathway in Dendrobium catenatum. Scientific data 2018, 5:180252.
109.Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS, Chang SB, Chen F et al: The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Scientific reports 2016, 6:19029.
110.Brown MA, Sims RJ, 3rd, Gottlieb PD, Tucker PW: Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Molecular cancer 2006, 5:26.
111.Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nature cell biology 2004, 6(8):731–740.
112.Van Aller GS, Reynoird N, Barbash O, Huddleston M, Liu S, Zmoos AF, McDevitt P, Sinnamon R, Le B, Mas G et al: Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 2012, 7(4):340–343.
113.Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL: Repression of p53 activity by Smyd2-mediated methylation. Nature 2006, 444(7119):629–632.
114.Kunizaki M, Hamamoto R, Silva FP, Yamaguchi K, Nagayasu T, Shibuya M, Nakamura Y, Furukawa Y: The lysine 831 of vascular endothelial growth factor receptor 1 is a novel target of methylation by SMYD3. Cancer research 2007, 67(22):10759–10765.
115.Mazur PK, Reynoird N, Khatri P, Jansen PW, Wilkinson AW, Liu S, Barbash O, Van Aller GS, Huddleston M, Dhanak D et al: SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 2014, 510(7504):283–287.
116.Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton MC, Wen H, Shi X: Regulation of estrogen receptor alpha by histone methyltransferase SMYD2-mediated protein methylation. Proceedings of the National Academy of Sciences of the United States of America 2013, 110(43):17284–17289.
117.Ma S, Martin-Laffon J, Mininno M, Gigarel O, Brugiere S, Bastien O, Tardif M, Ravanel S, Alban C: Molecular Evolution of the Substrate Specificity of Chloroplastic Aldolases/Rubisco Lysine Methyltransferases in Plants. Molecular plant 2016, 9(4):569–581.
118.Ying Z, Mulligan RM, Janney N, Houtz RL: Rubisco small and large subunit N-methyltransferases. Bi- and mono-functional methyltransferases that methylate the small and large subunits of Rubisco. The Journal of biological chemistry 1999, 274(51):36750–36756.
119.Gao ZP, Yu QB, Zhao TT, Ma Q, Chen GX, Yang ZN: A functional component of the transcriptionally active chromosome complex, Arabidopsis pTAC14, interacts with pTAC12/HEMERA and regulates plastid gene expression. Plant physiology 2011, 157(4):1733–1745.
120.Kim DW, Kim KB, Kim JY, Seo SB: Characterization of a novel histone H3K36 methyltransferase setd3 in zebrafish. Bioscience, biotechnology, and biochemistry 2011, 75(2):289–294.
121.Clark JW, Donoghue PCJ: Whole-Genome Duplication and Plant Macroevolution. Trends in plant science 2018, 23(10):933–945.
122.Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151–1155.
123.Mozgova I, Kohler C, Hennig L: Keeping the gate closed: functions of the polycomb repressive complex PRC2 in development. The Plant journal: for cell and molecular biology 2015, 83(1):121–132.
124.Yu CW, Tai R, Wang SC, Yang P, Luo M, Yang S, Cheng K, Wang WC, Cheng YS, Wu K: HISTONE DEACETYLASE6 Acts in Concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to Regulate Transposon Silencing. The Plant cell 2017, 29(8):1970–1983.
125.Wang X, Chen J, Xie Z, Liu S, Nolan T, Ye H, Zhang M, Guo H, Schnable PS, Li Z et al: Histone lysine methyltransferase SDG8 is involved in brassinosteroid-regulated gene expression in Arabidopsis thaliana. Molecular plant 2014, 7(8):1303–1315.
126.Yang H, Howard M, Dean C: Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Current biology: CB 2014, 24(15):1793–1797.
127.Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G: GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 2015, 31(8):1296–1297.
128.Kumar S, Stecher G, Tamura K: MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular biology and evolution 2016, 33(7):1870–1874.
129.Kim D, Langmead B, Salzberg SL: HISAT: a fast spliced aligner with low memory requirements. Nature methods 2015, 12(4):357–360.
130.Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL: StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature biotechnology 2015, 33(3):290–295.
131.Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M et al: TM4: a free, open-source system for microarray data management and analysis. BioTechniques 2003, 34(2):374–378.
132.Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402–408.