Materials
Methoxypoly (ethylene glycol) (mPEG; Mw 2000 g/mol), succinic anhydride (SAA), chloroform-D (CDCl3, 99.8%) and deuterated dimethyl sulphoxide (DMSO-d6) were purchased from Sigma-Aldrich (Shanghai, China); 1-ethyl-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC·HCl), methyl 4-aminobenzoate and 1-hydroxy-benzotriazole monohydrate (HOBt), from GL Biochem (Shanghai, China); tetramethylethylenediamine, N,N-diisopropyl ethylamine (DIEA) and 4-dimethylaminopyridine (DMAP), from Aladdin Chemistry (Shanghai, China); 1,3-dicyclohexylcarbodiimide (DCC) and cystamine dihydrochloride, from Asta Tech Biopharm (Chengdu, China); and doxorubicin hydrochloride (DOX·HCl), from Shanghai Yingxuan Chempharm (Shanghai, China). DOX was deprotonated as reported.31 All solvents were obtained from Chengdu Kelong Chemical (Chengdu, China) and purified before use. Dulbecco's Modified Eagle's Medium (DMEM), Roswell Park Memorial Institute (RPMI) 1640 medium, fetal bovine serum (FBS), and the cell counting kit-8 (CCK-8) were purchased from Life Technologies (Gibco, USA).
Synthesis of redox-sensitve amphiphiles mPEG-ss-Tripp
Synthesis of mPEG-SAA
The mPEG (0.2 g, 0.1 mmol) and SAA (0.05 g, 0.5 mmol) were dissolved in 60 mL of anhydrous CH2Cl2 with strong stirring. Pyridine (0.4 mL) was added dropwise to the mixture on an ice bath. The mixture was stirred at room temperature for 48 h. An appropriate amount of acetic acid was added to the reaction system under stirring in order to neutralize salts produced in the system. The precipitate was removed by filtration, the filtrate was evaporated and the crude product was precipitated in a large volume of cold diethyl ether. This purification procedure was repeated several times to yield mPEG-SAA.
Synthesis of mPEG-ss-NH2
The mPEG-SAA (0.81 g, 0.4 mmol), EDC·HCl (0.32 g, 1.6 mmol) and HOBT (0.22 g, 1.6 mmol) were dissolved in 60 mL of DMF and stirred at room temperature for 3 h. To the solution was added
cystamine dihydrochloride (0.14 g, 0.6 mmol), and the mixture was vigorously stirred at room temperature for 48 h. Then the mixture was filtered and concentrated under reduced pressure. The dark brown residual oil was redissolved in CH2Cl2, and the organic phase was extracted three times with a saturated aqueous solution of sodium chloride, dried with anhydrous MgSO4 overnight and concentrated. The crude product was precipitated three times in cold anhydrous diethyl ether and dried under vacuum to obtain light-yellow solid mPEG-ss-NH2.
Synthesis of mPEG-ss-Tripp
The mPEG-ss-NH2 (0.45 g, 0.2 mmol), Tripp-COOH32 (0.21 g, 0.6 mmol), EDC·HCl (0.16 g, 0.8 mmol) and HOBT (0.11 g, 0.8 mmol) were added to 60 mL of DMF, then DIEA (0.2 mL, 1.2 mmol) was injected into the solution, and the mixture was stirred at room temperature for 48 h. The solvent was evaporated under reduced pressure, and the residue was dissolved in CH2Cl2. The organic phase was washed three times with a saturated aqueous solution of sodium chloride and dried over anhydrous MgSO4. The filtrate was concentrated and precipitated twice in cold diethyl ether to yield mPEG-ss-Tripp.
Characterization
Products were analyzed in DMSO-d6using 1H NMR (Ascend 400 MHz, Bruker), with tetramethylsilane as an internal reference. Micelle size and size distribution were analyzed by dynamic light scattering (Malvern ZetasizerNano ZS, UK). Micelle morphology was observed using scanning electron microscopy (S4800, Hitachi, Japan). Samples were prepared for electron microscopy by dipping a silicon pellet into a solution of freshly prepared micelles, then drying the pellet overnight at room temperature.
Preparation of drug-loaded micelles
Drug-loaded micelles DOX/mPEG-ss-Tripp were prepared using a dialysis method. Briefly, freeze-dried amphiphilic mPEG-ss-Tripp (10 mg) and DOX (2.5 mg) were co-dissolved in 1 mL of DMSO, dispersed slowly into 10 mL of deionized water and stirred vigorously overnight. Then, the mixtures were dialyzed against deionized water at 4 °C for 12 h in dialysis tubing (Spectra/Por) with a molecular weight cut-off of 1 kDa. The solution was removed from the
dialysis tubing, centrifuged and freeze-dried. Redox-insensitive DOX/mPEG-Tripp micelles were prepared in the same way.
DOX content of drug-loaded micelles was determined by UV/vis spectroscopy (Specord 200 PLUS, Germany) at 480 nm using a standard calibration curve obtained from solutions containing different concentrations of DOX in DMSO. Solutions were shielded from light. Drug loading content (DLC) and encapsulation efficiency (DLE) were calculated according to the following formulas:
DLC (%) = (weight of loaded DOX/weight of drug-loaded micelle) × 100%
DLE (%) = (weight of loaded DOX /weight of drug in feeding) × 100%
In vitro drug release
Profiles of DOX release from micelles were investigated in phosphate-buffered saline (PBS; pH 7.4, ionic strength = 0.01 M) alone or supplemented with 2 μM, 2 mM or 10 mM GSH. Briefly, 1 mL of
drug-loaded micelles were transferred into dialysis tubes (Spectra/Por) with a molecular weight cut-off of 1 kDa and immersed in 25 mL of release medium in vials with continuous shaking at 120 rpm and 37 °C. At predetermined intervals, 1 mL of release medium was taken out and replaced with an equal volume of fresh medium. The released DOX was detected using a fluorescence spectrometer (F-7000, Hitachi, Japan) with excitation at 480 nm and emission at 550 nm. The release experiments were conducted in triplicate under sink conditions, and average values with standard deviations were presented.
In vitro cytotoxicity and antitumor efficacy
The biocompatibility of blank micelles was evaluated using the CCK-8 assay. 293T human embryonic kidney cells and 4T1 breast cancer cells were separately seeded in 96-well plates (6×103 cells per well) in 100 μL of culture medium and incubated for 24
Medium was removed and replaced with 100 µL of medium containing different concentrations of blank micelles. Then the cells were incubated for another 48 h, the medium was removed, the wells were rinsed three times with PBS, and CCK-8 solution (100 µL, volume fraction, 10%) was added to each well. The cells were incubated another 2 h in the dark, and absorbance was measured at 450 nm using a microplate reader (Thermo Scientific MK3, USA).
Antitumor activity of drug-loaded micelles against 4T1 cells was also evaluated using the CCK-8 assay. Cells were seeded and incubated for 24 h in 96-well plates as described above, then free DOX·HCl or DOX-loaded micelles in culture medium were added at various DOX concentrations (0.001-100 μg/mL) and the cells were incubated another 48 h. After that, the cells were subjected to the CCK-8 assay as described above.
In vitro drug release
Profiles of DOX release from micelles were investigated in phosphate-buffered saline (PBS; pH 7.4, ionic strength = 0.01 M) alone or supplemented with 2 μM, 2 mM or 10 mM GSH. Briefly, 1 mL of drug-loaded micelles were transferred into dialysis tubes (Spectra/Por) with a molecular weight cut-off of 1 kDa and immersed in 25 mL of release medium in vials with continuous shaking at 120 rpm and 37 °C. At predetermined intervals, 1 mL of release
medium was taken out and replaced with an equal volume of fresh medium. The released DOX was detected using a fluorescence spectrometer (F-7000, Hitachi, Japan) with excitation at 480 nm and emission at 550 nm. The release experiments were conducted in triplicate under sink conditions, and average values with standard deviations were presented.
In vitro cytotoxicity and antitumor efficacy
The biocompatibility of blank micelles was evaluated using the CCK-8 assay. 293T human embryonic kidney cells and 4T1 breast cancer cells were separately seeded in 96-well plates (6×103 cells per well) in 100 μL of culture medium and incubated for 24 h. Medium was removed and replaced with 100 µL of medium containing different concentrations of blank micelles. Then the cells were incubated for another 48 h, the medium was removed, the wells were rinsed three times with PBS, and CCK-8 solution (100 µL, volume fraction, 10%) was added to each well. The cells were incubated another 2 h in the dark, and absorbance was measured at 450 nm using a microplate reader (Thermo Scientific MK3, USA).
Antitumor activity of drug-loaded micelles against 4T1 cells was also evaluated using the CCK-8 assay. Cells were seeded and incubated for 24 h in 96-well plates as described above, then free DOX·HCl or
DOX-loaded micelles in culture medium were added at various DOX concentrations (0.001-100 μg/mL) and the cells were incubated another 48 h. After that, the cells were subjected to the CCK-8 assay as described above.
Cellular uptake of micelles
Uptake of micelles by 4T1 cells was analyzed using confocal laser scanning microscopy and flow cytometry. Cells in logarithmic growth were seeded in 35-mm confocal dishes (2×104 mL-1 cells per well) and incubated for 24 h. Then the medium was replaced with blank or DOX-loaded micelles (10 μg/mL DOX) in culture medium and cells were incubated for 1 or 3 h. The medium was removed and cells were washed three times with cold PBS, then examined using confocal laser scanning microscopy with excitation at 480 nm and emission at 590 nm.
For the flow cytometry tests, 4T1 cells were seeded in 6-well plates (1×105 mL-1 cells per well), incubated for 24 h, then treated for 1 or 3 h with free DOX·HCl or DOX-loaded micelles (10 μg/mL DOX). After that, medium was removed and cells were washed three times in PBS and harvested by trypsin treatment. Finally, cells were centrifuged (1000 rpm, 5 min), resuspended in PBS, and analyzed using flow cytometry ( BD FACSCanto II, USA ).
In vivo toxicity and antitumor efficacy
All animal experiments were performed according to institutional guidelines and the recommendations of the US National Institutes of Health for the care and use of research animals. Male BALB/c mice (18-20 g) were purchased from West China Experimental Animal Culture Center of Sichuan University (Chengdu, China). 4T1 cells (1×106) were injected subcutaneously into the right flank, and when the inoculated tumors reached a volume of 100-200 mm3, the animals were randomized to receive one of the following treatments (n = 8 per group): saline, DOX·HCl, DOX/mPEG-ss-Tripp micelles, or DOX/mPEG-Tripp micelles (DOX always at 5 mg/kg body). Treatments were delivered intravenously via the tail vein every 3 days for 4 treatments. Tumor volume and body weight were monitored at prescribed time intervals, and tumor volume was calculated using the formula: V (mm3) = 1/2 × ab2,
where a and b are the largest and smallest diameters of the tumor, respectively.
At 21 d after the fourth treatment, all mice were sacrificed. Organs including heart, liver, spleen, lung, kidney and tumor were excised from each mouse and fixed in 4% formaldehyde. Representative tissues were paraffin-embedded, sectioned, stained with hematoxylin and eosin and examined under a light microscope. Blood was assayed using standard serum tests performed by Chengdu Lilai Biotechnology (Chengdu, China) Tumor sections were immunostained with monoclonal antibody against Ki-67 to assess tumor proliferation, while sections were assayed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) to assess the level of apoptosis.
Statistical analysis
All data are presented as mean ± standard deviation (SD). Inter-group differences were assessed for significance using Student’s t test, and p < 0.05 was defined as significant.