1 Friedman, N. D., Temkin, E. & Carmeli, Y. The negative impact of antibiotic resistance. Clin Microbiol Infect 22, 416-422, doi:10.1016/j.cmi.2015.12.002 (2016).
2 Jalvo, B., Faraldos, M., Bahamonde, A. & Rosal, R. Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. J Hazard Mater 340, 160-170, doi:10.1016/j.jhazmat.2017.07.005 (2017).
3 Kaviyarasu, K. et al. Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method. J Photochem Photobiol B 173, 466-475, doi:10.1016/j.jphotobiol.2017.06.026 (2017).
4 Mousa, S. A. et al. Novel mycosynthesis of Co3O4, CuO, Fe3O4, NiO, and ZnO nanoparticles by the endophytic Aspergillus terreus and evaluation of their antioxidant and antimicrobial activities. Appl Microbiol Biotechnol 105, 741-753, doi:10.1007/s00253-020-11046-4 (2021).
5 Louwakul, P., Saelo, A. & Khemaleelakul, S. Efficacy of calcium oxide and calcium hydroxide nanoparticles on the elimination of Enterococcus faecalis in human root dentin. Clin Oral Investig 21, 865-871, doi:10.1007/s00784-016-1836-x (2017).
6 Monzavi, A., Eshraghi, S., Hashemian, R. & Momen-Heravi, F. In vitro and ex vivo antimicrobial efficacy of nano-MgO in the elimination of endodontic pathogens. Clin Oral Investig 19, 349-356, doi:10.1007/s00784-014-1253-y (2015).
7 Costa, E. M., Silva, S., Pina, C., Tavaria, F. K. & Pintado, M. M. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe 18, 305-309 (2012).
8 Dubas, S. T., Wacharanad, S. & Potiyaraj, P. Tunning of the antimicrobial activity of surgical sutures coated with silver nanoparticles. Colloids & Surfaces A Physicochemical & Engineering Aspects 380, 25-28 (2011).
9 Ip, M., Lui, S. L., Poon, V. K. M., Lung, I. & Burd, A. Antimicrobial activities of silver dressings: an in vitro comparison. J Med Microbiol 55, 59-63, doi:10.1099/jmm.0.46124-0 (2006).
10 Sergevnin, V. I., Klyuchareva, N. M., Antipin, D. P. & Laricheva, E. N. Comparative evaluation of the efficacy of uncoated and coated with silver silicone urethral catheters for prevention of urinary tract infections among patients of the intensive care unit. Urologii͡a (Moscow, Russia: 1999), 33-36 (2016).
11 Poggio, C., Trovati, F., Ceci, M., Chiesa, M. & Pietrocola, G. Biological and antibacterial properties of a new silver fiber post: In vitro evaluation. Journal of Clinical and Experimental Dentistry 9, e387-e393 (2017).
12 Wu et al. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities. Materials Science & Engineering C Materials for Biogical Applications (2016).
13 Lansdown, A. A review of the use of silver in wound care: facts and fallacies. British Journal of Nursing 13, 6-19 (2004).
14 Zhang, X. G. et al. Constructing magnetic and high-efficiency AgI/CuFe2O4 photocatalysts for inactivation of Escherichia coli and Staphylococcus aureus under visible light: Inactivation performance and mechanism analysis. Sci Total Environ 668, 730-742, doi:10.1016/j.scitotenv.2019.03.068 (2019).
15 Atacan, K., Ozacar, M. & Ozacar, M. Investigation of antibacterial properties of novel papain immobilized on tannic acid modified Ag/CuFe2O4 magnetic nanoparticles. Int J Biol Macromol 109, 720-731, doi:10.1016/j.ijbiomac.2017.12.066 (2018).
16 Wang, T. et al. Facile loading of Ag nanoparticles onto magnetic microsphere by the aid of a tannic acid-Metal polymer layer to synthesize magnetic disinfectant with high antibacterial activity. J Hazard Mater 342, 392-400, doi:10.1016/j.jhazmat.2017.08.047 (2018).
17 Cha, S., Mo, C., Kim, K. & Hong, S. Ferromagnetic cobalt nanodots, nanorices, nanowires and nanoflowers by polyol process. Journal of Materials Research 20, 2148-2153 (2005).
18 Wang LR, Liu FM & Zhang J. Study on the Present Condition of the Fecal Coliform Pollution in the Lanzhou Section of the Yellow River. Environmental Science & Technology v.33, 63-67.
19 Jia, R. L. Water Quality Analysis and Pollution Prevention Measures in Lanzhou Section of Yellow River. Journal of Anhui Agricultural Sciences (2010).
20 AbdelmoneimBakur, TarigElshaarani, YongwuNiu & QiheChen. Comparative study of antidiabetic, bactericidal, and antitumor activities of MEL@AgNPs, MEL@ZnONPs, and Ag–ZnO/MEL/GA nanocomposites prepared by using MEL and gum arabic. RSC Advances 9.
21 Rastogi, S. K. et al. Ag colloids and Ag clusters over EDAPTMS-coated silica nanoparticles: synthesis, characterization, and antibacterial activity against Escherichia coli. Nanomedicine Nanotechnology Biology & Medicine 7, 305-314 (2011).
22 Syed, F. S., Kasabe, A. M., Mane, P. C., Chaudhari, R. & Adhyapak, P. V. Selective antifungal and antibacterial activities of Ag-Cu and Cu-Ag core-shell nanostructures synthesized in-situ PVA. Nanotechnology 31 (2020).
23 Gong, P. et al. Preparation and antibacterial activity of Fe3O4 and Ag nanoparticles. (2007).
24 Zhao, X., Wu, P., Lei, Y., Chen, F. & Liu, Y. Sun-Light-Driven Plasmonic Ag/AgCl@TNT Photocatalysts for High-Efficient Absorption-Regeneration and Photocatalytic Degradation. Applied Surface Science 529, 147010 (2020).
25 Zhou, X. et al. Co-effects of C/Ag dual ion implantation on enhancing antibacterial ability and biocompatibility of silicone rubber. Biomed Mater 15, 065003, doi:10.1088/1748-605X/ab99d3 (2020).
26 Zhang, Y. et al. Carbon nanofibers supported Co/Ag bimetallic nanoparticles for heterogeneous activation of peroxymonosulfate and efficient oxidation of amoxicillin. J Hazard Mater 400, 123290, doi:10.1016/j.jhazmat.2020.123290 (2020).
27 Li, W. R. et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl Microbiol Biotechnol 85, 1115-1122, doi:10.1007/s00253-009-2159-5 (2010).
28 Bosetti, M., Masse, A., Tobin, E. & Cannas, M. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23, 887-892, doi:10.1016/s0142-9612(01)00198-3 (2002).
29 You, C. et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol Biol Rep 39, 9193-9201, doi:10.1007/s11033-012-1792-8 (2012).
30 Xiao, J., Chernova, N. A. & Whittingham, M. S. Layered Mixed Transition Metal Oxide Cathodes with Reduced Cobalt Content for Lithium Ion Batteries. Chemistry of Materials 20, 7454-7464 (2008).
31 Harris, V. G. et al. High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material. Physics volume 43, 165003-165009(165007) (2010).
32 Imine, S. et al. Bottom-up and new compaction processes: A way to tunable properties of nanostructured cobalt ferrite ceramics. Journal of the European Ceramic Society 31, 2943-2955 (2011).