1.Srivastava A, Appelman H, Goldsmith JD, et al. The Use of Ancillary Stains in the Diagnosis of Barrett Esophagus and Barrett Esophagus-associated Dysplasia: Recommendations From the Rodger C. Haggitt Gastrointestinal Pathology Society.Am J Surg Pathol. 2017; 41(5): 8–21.
2.Theron BT, Padmanabhan H, Aladin H, et al. The risk of oesophageal adenocarcinoma in a prospectively recruited Barrett’s oesophagus cohort. United European Gastroenterol J. 2016; 4(6): 754–761.
3.Hayeck TJ, Kong CY, Spechler SJ, et al. The prevalence of barrett’s esophagus in the US: Estimates from a simulation model confirmed by SEER data. Dis Esophagus. 2010; 3: 451–457.
4.Tramontano AC, Sheehan DF, Yeh JM, et al. The Impact of a Prior Diagnosis of Barrett’s Esophagus on Esophageal Adenocarcinoma Survival. Am J Gastroenterol. 2017; 112(8): 1256–1264.
5.Fitzgerald RC. Molecular basis of Barrett’s oesophagus and oesophageal adenocarcinoma. Gut. 2006; 55(12):1810–1820.
6.Howlader N, Noone A, Krapcho M, et al. SEER cancer statistics factsheets: Esophageal cancer. April, 2013; 2014.
7.Jang BG, Lee BL, Kim WH. Intestinal Stem Cell Markers in the Intestinal Metaplasia of Stomach and Barrett’s Esophagus. PLOS One; 2015; 10(5):e0127300.
8.Souza RF, Shewmake K, Terada LS, et al. Acidexposure activates the mitogen-activated protein kinase pathways in Barrett’s esophagus. Gastroenterology 2002; 122: 299–307.
9.Elke Prade, Moritz Tobiasch, Ivana Hitkova, et al, Bile Acids Down-Regulate Caveolin–1 in Esophageal Epithelial Cells through Sterol Responsive Element-Binding Protein. Mol Endocrinol, 2012; 26(5): 819–832.
10.Minacapelli CD, Bajpai M, Geng X, et al. Barrett’s Metaplasia Develops from Cellular Reprograming of Esophageal Squamous Epithelium due to Gastroesophageal Reflux. Am J Physiol Gastrointest Liver Physiol. 2017; Mar; 23: ajpgi. 00268. 2016. doi: 0.1152/ajpgi. 00268. 2016.
11. Shen C, Zhang H, Wang P, et al. Deoxycholic acid (DCA) confers an intestinal phenotype on esophageal squamous epithelium via induction of the stemness-associated reprogramming factors OCT4 and SOX2. Cell Cycle; 2016; 15(11): 1439–1449.
12.Levert-Mignon A, Bourke MJ, Lord SJ, et al. Changes in gene expression of neo-squamous mucosa after endoscopic treatment for dysplastic Barrett’s esophagus and intramucosal adenocarcinoma. United European Gastroenterol J. 2017; 5(1): 13–20.
13.Moons LM, Bax DA, Kuipers EJ, et al. The homeodomain protein CDX–2 is an early marker of Barrett’s oesophagus. J Clin Patho.l 2004; 57: 1063–1068.
14.Dongfeng Sun, Xiao Wang, Zhibo Gai, et al. Bile acids but not acidic acids induce Barrett’s esophagus. Int J Clin Exp Pathol. 2015; 8(2): 1384–1392.
15.Scoville DH, Sato T, He XC, et al. Current view: intestinal stem cells and signaling. Gastroenterology. 2008; 134: 849–864.
16.Ishizuya-Oka A, Hasebe T. Sonic hedgehog and bone morphogenetic protein–4 signaling pathway involved in epithelial cell renewal along the radial axis of the intestine. Digestion. 2008; 77 (Supp1):42–47.
17.Katoh M. Notch signaling in gastrointestinal tract (review). Int J Oncol. 2007; 30: 247–251.
18.Wang YC, Wang ZQ, Yuan Y, et al. Notch signaling pathway is inhibited in the development of Barrett’s esophagus: An in vivo and in vitro study. Can J Gastroenterol Hepatol. 2018 Mar 26; 2018:4149317.
19.Shi FT, Yu M, Zloty D, et al. Notch signaling is significantly suppressed in basal cell carcinomas and activation induces basal cell carcinoma cell apoptosis. Mol Med Rep. 2017; 15(4): 1441–1454.
20. Fre S, Huyghe M, Mourikis P, et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature. 2005; 435: 964–968.
21.Wong GT, Manfra D, Poulet FM, et al. Chronic treatment with the gamma-secretase inhibitor LY–411,575 inhibits beta-amyloid peptide production and alterslymphopoiesis and intestinal cell differentiation. J Biol Chem. 2004; 279: 12876–12882.
22.Yan M, Plowman GD. Delta-like 4/Notch signaling and its therapeutic implications. Clin Cancer Res. 2007; 13: 7243–7246.
23.Yuji Tamagawa, Norihisa Ishimura, Goichi Uno, et al. Notch signaling pathway and CDX–2 expression in the development of Barrett’s esophagus. Laboratory Investigation. 2012; 92: 896–909.
24.David J. Morrow, Nelly E. Avissar, Liana Toia, et al. Pathogenesis of Barrett’s esophagus: Bile acids inhibit the Notch signaling pathway with induction of CDX–2 gene expression in human esophageal cells. Surgery. 2009; 146(4): 714–722.
25.Wilson JJ, Kovall RA. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell. 2006; 124 (5): 985–96.
26.Tamagawa Y, Ishimura N, Uno G, et al. Notch signaling pathway and Cdx2 expression in the development of Barrett’s esophagus. Lab Invest. 2012 Jun;92(6):896–909.
27.Tamagawa Y, Ishimura N, Uno G, et al. Bile acids induce Delta-like 1 expression via CDX–2-dependent pathway in the development of Barrett’s esophagus. Lab Invest. 2016; 96(3): 325–337.
28.Hu Y, Williams VA, Gellersen O, et al. The pathogenesis of Barrett’s esophagus: secondary bile acids upregulate intestinal differentiation factor CDX–2 expression in esophageal cells. J Gastrointest Surg. 2007; 11: 827–834.35.
29.Eda A, Osawa H, Satoh K, et al. Aberrant expression of CDX–2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003; 38: 14–22.
Takayama K, Negoro R, Yamashita T, Generation of Human iPSC-Derived Intestinal Epithelial Cell Monolayers by CDX2 Transduction. Cell Mol Gastroenterol Hepatol. 2019 Jun 19. pii: S2352–345X(19)30082–7.
31. Leow CC, Romero MS, Ross S, et al. Down-regulated in colonadenocarcinomas, inhibits proliferation and tumorigenesis of coloncancer cells. Cancer Res. 2004; 64: 6050–6057.
32.van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibitionturns proliferative cells in intestinal crypts and adenomasinto goblet cells. Nature. 2005; 435: 959–963.
33.Menke V, van Es JH, de Lau W, et al. Conversion of metaplastic Barrett’s epithelium into post-mitotic goblet cells bygamma-secretase inhibition. Dis Model Mech. 2010; 3: 104–110.
34.Michael Quante, Govind Bhagat, Julian Abrams, et al. Bile acid and inflammation activate gastric cardia stem cells in a mouse model of Barrett’s-like metaplasia. Cancer Cell. 2012; 21(1): 36–51.
35.Menke V, van Es JH, de Lau W, et al. Conversion of metaplastic Barrett’s epithelium into post-mitotic goblet cells by γ-secretase inhibition. Disease Models & Mechanisms. 2010; 3(1–2): 104–110.
36.Bankson DD, Kestin M, Rifai N. Role of free radicals in cancer and atherosclerosis. Clin Lab Med. 1993; 13: 463–480.
37.Oh TY, Lee JS, Ahn BO, et al. Oxidative stress is more important than acid in the pathogenesis of reflux oesophagitis in rats. Gut. 2001; 49: 364–371.
38. Yang Q, Bermingham NA, Finegold MJ, et al. Requirement of Math1 for secretory cell
lineage commitment in the mouse intestine. Science. 2001; 294: 2155–2156.
39. Milano J, McKay J, Dagenais C, et al. Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci. 2004; 82: 341–358.