1. Barrett, R. D. H., Rogers, S. M. & Schluter, D. Environment specific pleiotropy facilitates divergence at the ectodysplasin locus in threespine stickleback. Evolution (N. Y). 63, 2831–2837 (2009).
2. Johnston, S. E. et al. Life history trade-offs at a single locus maintain sexually selected genetic variation. Nature 502, 93–95 (2013).
3. Christie, M. R., McNickle, G. G., French, R. A. & Blouin, M. S. Life history variation is maintained by fitness trade-offs and negative frequency-dependent selection. Proc. Natl. Acad. Sci. U. S. A. 115, 4441–4446 (2018).
4. Zajitschek, F. & Connallon, T. Antagonistic pleiotropy in species with separate sexes, and the maintenance of genetic variation in life-history traits and fitness. Evolution (N. Y). 72, 1306–1316 (2018).
5. Mérot, C., Llaurens, V., Normandeau, E., Bernatchez, L. & Wellenreuther, M. Balancing selection via life-history trade-offs maintains an inversion polymorphism in a seaweed fly. Nat. Commun. 11, (2020).
6. Bonduriansky, R. & Chenoweth, S. F. Intralocus sexual conflict. Trends Ecol. Evol. 24, 280–288 (2009).
7. Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 98, 1671–1675 (2001).
8. Connallon, T. & Clark, A. G. Balancing selection in species with separate sexes: Insights from fisher’s geometric model. Genetics 197, 991–1006 (2014).
9. Mokkonen, M. et al. Negative frequency-dependent selection of sexually antagonistic alleles in Myodes glareolus. Science 334, 972–974 (2011).
10. Connallon, T. & Matthews, G. Cross‐sex genetic correlations for fitness and fitness components: Connecting theoretical predictions to empirical patterns. Evol. Lett. 3, 254–262 (2019).
11. Abbott, J., Rios-Cardenas, O. & Morris, M. R. Insights from intralocus tactical conflict: adaptive states, interactions with ecology and population divergence. Oikos 128, 1525–1536 (2019).
12. Morris, M. R., Goedert, D., Abbott, J. K., Robinson, D. M. & Rios-Cardenas, O. Intralocus tactical conflict and the evolution of alternative reproductive tactics. Advances in the Study of Behavior vol. 45 (Elsevier Inc., 2013).
13. Kim, K. W. et al. A sex-linked supergene controls sperm morphology and swimming speed in a songbird. Nat. Ecol. Evol. 1, 1168–1176 (2017).
14. Schwander, T., Libbrecht, R. & Keller, L. Supergenes and complex phenotypes. Curr. Biol. 24, 288–294 (2014).
15. Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity (Edinb). 113, 1–8 (2014).
16. Dobzhansky, T. Genetics of natural populations. XIX. Origin of heterosis through natural selection in populations of Drosophila pseudoobscura. Genetics 35, 288–302 (1950).
17. Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).
18. Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).
19. Horton, B. M. et al. Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc. Natl. Acad. Sci. U. S. A. 111, 1–6 (2014).
20. Faria, R., Johannesson, K., Butlin, R. K. & Westram, A. M. Evolving Inversions. Trends Ecol. Evol. 34, 239–248 (2019).
21. Wellenreuther, M. & Bernatchez, L. Eco-Evolutionary Genomics of Chromosomal Inversions. Trends Ecol. Evol. 33, 427–440 (2018).
22. Knief, U. et al. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat. Ecol. Evol. 1, 1177–1184 (2017).
23. Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, (2010).
24. Loveland, J. L., Lank, D. B. & Küpper, C. Gene expression modification by an autosomal inversion associated with three male mating morphs. Front. Genet. (2021) doi:10.3389/fgene.2021.641620.
25. van Rhijn, J. G. The ruff. (T. & A.D. Poyser, 1991).
26. Giraldo-Deck, L. M. et al. Development of intraspecific size variation in black coucals, white-browed coucals and ruffs from hatching to fledging. J. Avian Biol. 51, 1–14 (2020).
27. Lank, D. B., Farrell, L. L., Burke, T., Piersma, T. & McRae, S. B. A dominant allele controls development into female mimic male and diminutive female ruffs. Biol. Lett. 9, 15–18 (2013).
28. Christians, J. K. Avian egg size: Variation within species and inflexibility within individuals. Biol. Rev. Camb. Philos. Soc. 77, 1–26 (2002).
29. Pick, J. L. et al. Artificial selection reveals the energetic expense of producing larger eggs. Front. Zool. 13, 1–10 (2016).
30. Jha, A. R. et al. Whole-genome resequencing of experimental populations reveals polygenic basis of egg-size variation in Drosophila melanogaster. Mol. Biol. Evol. 32, 2616–2632 (2015).
31. Verhoeven, M. A. et al. Variation in Egg Size of Black-Tailed Godwits. Ardea 107, 291–302 (2019).
32. Birchard, G. F. & Deeming, D. C. Egg allometry: influences of phylogeny and the altricial-precocial continuum. in Nests, eggs, and incubation (eds. Deeming, D. C. & Reynolds, S. J.) 97–112 (Oxford University Press, 2015).
33. Amat, J. A., Fraga, R. M. & Arroyo, G. M. Intraclutch egg-size variation and offspring survival in the Kentish Plover Charadrius alexandrinus. Ibis (Lond. 1859). 143, 17–23 (2001).
34. Rahn, H. & Paganelli, C. V. Relationship of avian egg weight to body weight. Auk 92, 750–765 (1975).
35. Loveland, J. L. et al. Functional differences in the hypothalamic-pituitary-gonadal axis are associated with alternative reproductive tactics based on an inversion polymorphism. Horm. Behav. 127, 104877 (2021).
36. Krist, M. Egg size and offspring quality: A meta-analysis in birds. Biol. Rev. 86, 692–716 (2011).
37. Blomqvist, D., Johansson, O. C. & Go, F. Parental quality and egg size affect chick survival in a precocial bird , the lapwing Vanellus vanellus. Oecologia 110, 18–24 (1997).
38. Cabana, G., Frewin, A., Peters, R. H. & Randall, L. The effect of sexual size dimorphism on variations in reproductive effort of birds and mammals. Am. Nat. 120, 17–25 (1982).
39. Weatherhead, P. J. & Teather, K. L. Sexual size dimorphism and egg-size allometry in birds. Evolution (N. Y). 48, 671–678 (1994).
40. Teather, K. L. & Weatherhead, P. J. Sex-specific energy requirements of great-tailed grackle (Quiscalus mexicanus). J. Anim. Ecol. 57, 659–668 (1988).
41. Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).
42. Llaurens, V., Whibley, A. & Joron, M. Genetic architecture and balancing selection: the life and death of differentiated variants. Mol. Ecol. 26, 2430–2448 (2017).
43. Berdan, E. L., Blanckaert, A., Butlin, R. K. & Bank, C. Deleterious mutation accumulation and the long-term fate of chromosomal inversions. PLoS Genet. 17, e1009411 (2021).
44. Jay, P. et al. Mutation load at a mimicry supergene sheds new light on the evolution of inversion polymorphisms. Nat. Genet. 53, 288–293 (2021).
45. Stolle, E. et al. Degenerative expansion of a young supergene. Mol. Biol. Evol. 36, 553–561 (2018).
46. Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).
47. Stuglik, M. T., Babik, W., Prokop, Z. & Radwan, J. Alternative reproductive tactics and sex-biased gene expression: The study of the bulb mite transcriptome. Ecol. Evol. 4, 623–632 (2014).
48. Bleay, C., Comendant, T. & Sinervo, B. An experimental test of frequency-dependent selection on male mating strategy in the field. Proc. R. Soc. B 274, 2019–2025 (2007).
49. Gross, M. R. Evolution of alternative reproductive strategies: frequency- dependent sexual selection in male bluegill sunfish. Philos. Trans. Biol. Sci. 332, 59–66 (1991).
50. Jukema, J. & Piersma, T. Permanent female mimics in a lekking shorebird. Biol. Lett. 2, 161–164 (2006).
51. Lank, D. B. & Smith, C. M. Conditional lekking in ruff (Philomachus pugnax). Behav. Ecol. Sociobiol. 20, 137–145 (1986).
52. Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92 (1951).
53. Schielzeth, H. & Bolund, E. Patterns of conspecific brood parasitism in zebra finches. Anim. Behav. 79, 1329–1337 (2010).
54. Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2006).
55. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.r-project.org/ (2020).
56. Therneau, T. M. & Grambsch, P. M. The Cox Model. in Modeling Survival Data: Extending the Cox Model (eds. Therneau, T. M. & Grambsch, P. M.) 39–77 (Springer US, 2000).