1.Klastersky, J.; Ameye, L.; Maertns, J., et al. Bacteremia in febrile neutropenic cancer patients. Int J. Antimicrob Agent. 2007;30,51-59.
2.Cattaneo, C. Antoniazzi, F. Casari, S. et al. P. aeruginosa blood-stream infection among hematological patients: an old or new question? Ann Hematol. 2012;91(8),1299-1304.
3.Aslan, S.; Citak, E. C.; Yis, R.; Degirmenci, S.; Arman, D. Bacterial Spectrum and antimicrobial susceptibility pattern of bloodstream infections in children with febrile neutropenia: experience of single center in southeast of Turkey. Indian J. Microbiol, 2012; 52(2),203-208.
4.Mandal, P. K.. Micro-organisms Associated with Febrile Neutropenia in Patients with Haematological Malignancies in a Tertiary Care Hospital in Eastern India. Indian J Hematol Blood Transfus. 2015;31(1):46–50.
5. Conn JR, Catchpoole EM, Runnegar N, Mapp SJ, Markey KA. Low rates of antibiotic resistance and infectious mortality in a cohort of high-risk hematology patients: A single center, retrospective analysis of blood stream infection. PLoS One. 2017;12(5): e0178059. doi: 10.1371 / journal.pone.0178059.
6. Di Blasi R, Cattaneo C, Lewis RE, Tumbarello M, Angelici L, Dragonetti G, et al. Febrile events in acute lymphoblastic leukemia: a prospective observational multicentric SEIFEM study (SEIFEM-2012/B ALL). Ann Hematol. 2018;97(5):791-798. doi: 10.1007/s00277-018-3252-6.
7.Mert D, Ceken S, Iskender G, Iskender D, Merdin A, Duygu F, Ertek M, Altuntas F. Epidemiology and mortality of bacterial bloodstream infections in patients with hematologic diseases. J Infect Dev Ctries. 2019;13:727-735. doi: 10.3855 / jidc.11457
8.Jiang AM, Shi X, Liu N, Gao H, Ren MD, Zheng XQ, Fu X, Liang X, Ruan ZP, Yao Y, Tian T. Nosocomial infections due to multidrug-resistant bacteria in cancer patients: a six-year retrospective study of an oncology Center in Western China. BMC Infect Dis. 2020;29;20(1):452. doi: 10.1186/s12879-020-05181-6.
9.Garrido MM, Garrido RQ, Cunha TN, Ehrlich S, Martins IS. Comparison of epidemiological, clinical and microbiological characteristics of bloodstream infection in children with solid tumours and haematological malignancies. EpidemiolInfect. 2019;8;147:e298. doi: 10.1017/S0950268819001845.
10.OPAS - Organização Pan-Americana da Saúde. Dez ameaças à saúde que a OMS combaterá em 2019. Brasília (DF). 2019. https://www.paho.org/bra/index.php?option=com_content&view=article&id=5848:dez-ameacas-a-saude-que-a-oms-combatera-em-2019&Itemid=875. Accessed 26 dezember 2020.
11.Castanheira M, DeshpandeLm, Mathai D, Bell Jm, Jones Rn, Mendes Re. Early dissemination of NDM-1- and OXA-181- producing Enterobacteriaceae in Indian hospitals: report from the SENTRY Antimicrobial Surveillance Program, 2006–2007. Antimicrob AgentsChemother. 2011;55:1274–8.
12. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657-86. doi: 10.1128/CMR.18.4.657-686.2005.
13.Ceken S, Iskender G, Gedik H, Duygu F, Mert D, Kaya AH, Altuntas F, Ertek M. Risk factors for bloodstream infections due to extended-spectrum β-lactamase producing Enterobacteriaceae in cancer patients. J Infect Dev Ctries. 2018;30;12(4):265-272. doi: 10.3855/jidc.9720.
14.Mitsuboshi S, Tsuruma N, Watanabe K, Takahashi S, Nakashita M, Ito A, Kobayashi K, Tsugita M. Does Quick Sepsis-Related Organ Failure Assessment Suggest the Use of Initial Empirical Carbapenem Therapy in Bacteremia Caused by Extended-Spectrum β-Lactamase-Producing Bacteria?: A Multicenter Case-Control Study. Jpn J Infect Dis. 2019;25;72(2):124-126. doi: 10.7883/yoken.JJID.2018.272.
15.Tohamy ST, Aboshanab KM, El-Mahallawy HA, El-Ansary MR, Afifi SS. Prevalence of multidrug-resistant Gram-negative pathogens isolated from febrile neutropenic cancer patients with bloodstream infections in Egypt and new synergistic antibiotic combinations. Infect Drug Resist. 2018;25;11:791-803. doi: 10.2147/IDR.S163293.
16.Calvo-Lon J, Landaverde DU, Ramos-Esquivel A, Villalobos-Vindas JM. Epidemiology and Outcomes of Bloodstream Infections in Patients With Solid Tumors in a Central American Population at Mexico Hospital, San Jose, Costa Rica. J Glob Oncol. 2018;4(4):1‐6. doi: 10.1200/JGO.17.00058.
17.Cattaneo C, Di Blasi R, Skert C, et al. Bloodstream infections in haematological cancer patients colonized by multidrug-resistant bacteria. Ann Hematol. 2018;97(9):1717‐1726. doi:10.1007/s00277-018-3341-6
18. Nham, E., Huh, K., Cho, SY, Chung, DR, Peck, KR, Lee, NY, & Kang, CI. Characteristics and clinical outcomes of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae bacteria in cancer patients. Infection and chemotherapy. 2020;52(1),59–69. https://doi.org/10.3947/ic.2020.52.1.59
19. Grundmann H, Glasner C, Albiger B, Aanensen DM, Tomlinson CT,. et al. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. Lancet Infect Dis. 2017;17(2):153-163. doi: 10.1016/S1473-3099(16)30257-2.
20.Clinical and Laboratory Standards Institute. (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; Third Edition. 2008, CLSI document M27-A3. Wayne, PA: Clinical and Laboratory Standards Institute.
21.Clinical and Laboratory Standards Institute. (CLSI). Reference method for broth dilution antifungal susceptibility testing of yeasts; fourth informational supplement. 2012, (Document M27-S4), Wayne: Clinical and Laboratory Standards Institute.
22.Inácio CP, Rocha AP, Barbosa RN, Oliveira NT, Silva JC, de Lima-Neto RG, Macêdo DP, Neves RP. (2016). Experimental white piedra: a robust approach to ultrastructural analysis, scanning electron microscopy and etiological discoveries. Exp Dermatol. 2016;25(1):79-81. doi: 10.1111/exd.12884.
23. Kurtzman, CP, & Robnett, CJ (1997). Identification of clinically important ascomycete yeasts based on nucleotide divergence at the 5 'end of the large subunit ribosomal DNA (26S) gene. Journal of Clinic microbiology. 1997;35(5),1216-1223. https://doi.org/10.1128/JCM.35.5.1216-1223.1997
24.Menezes LC, Rocchetti TT, BauabKde C, Cappellano P, Quiles MG, Carlesse F, de Oliveira JS, Pignatari AC. Diagnosis by real-time polymerase chain reaction of pathogens and antimicrobial resistance genes in bone marrow transplant patients with bloodstream infections. BMC Infect Dis. 2013;5;13:166. doi: 10.1186/1471-2334-13-166.
25.Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J AntimicrobChemother. 2012;67(4):906-9. doi: 10.1093/jac/dkr563.
26.Nithia N, Remitha R, Jayasree PR, Faisal M, ManishKumar PR. Analysis of beta-lactamases, blaNDM-1 phylogeny & plasmid replicons in multidrug-resistant Klebsiella spp. from a tertiary care centre in south India. Indian J Med Res. 2017;146(1):38-45.doi: 10.4103 / ijmr.IJMR_31_16
27.Mendes RE, Kiyota KA, Monteiro J, Castanheira M, Andrade SS, Gales AC, Pignatari AC, Tufik S. Rapid detection and identification of metallo-beta-lactamase-encoding genes by multiplex real-time PCR assay and melt curve analysis. J ClinMicrobiol. 2007;45(2):544-7. doi: 10.1128/JCM.01728-06.
28.Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48(1):15-22. doi: 10.1128/aac.48.1.15-22.2004.
29.Amudhan, S.M., Sekar, U., Arunagiri, K., Sekar, B. (2011). OXA beta-lactamase mediated carbapenem resistance in Acinetobacter baumannii. Indian J Med Microbio. 2011;29(3),269-274. doi: 10.4103 / 0255-0857.83911.
30.Ambler, R. P. The structure of beta-lactamases. Philosophical Transactions of the Royal Society Biological Sciences, London. 1980;289(36),321-331. doi: 10.1098/rstb.1980.0049.
31.Lima Barbieri N, Nielsen DW, Wannemuehler Y, Cavender T, Hussein A, Yan SG, Nolan LK, Logue CM. mcr-1 identified in Avian Pathogenic Escherichia coli (APEC). PLoS One. 2017;6;12(3):e0172997. doi: 10.1371/journal.pone.0172997.
32.Kara Ö, Zarakolu P, Aşçioğlu S, Etgül S, Uz B, Büyükaşik Y, Akova M. Epidemiology and emerging resistance in bacterial bloodstream infections in patients with hematologic malignancies. Infect Dis (Lond). 2015;47(10):686-93. doi: 10.3109/23744235.2015.1051105.
33.Gudiol C, Aguado JM, Carratalà J. Bloodstream infections in patients with solid tumors. Virulence. 2016;2;7(3):298-308. doi: 10.1080/21505594.2016.1141161.
34.Lubwama M, Phipps W, Najjuka CF, Kajumbula H, Ddungu H, Kambugu JB, Bwanga F. Bacteremia in febrile cancer patients in Uganda. BMC Res Notes. 2019;30;12(1):464. doi: 10.1186/s13104-019-4520-9.
35.Liang T, Xu C, Cheng Q, Tang Y, Zeng H, Li X. Epidemiology, Risk Factors, and Clinical Outcomes of Bloodstream Infection due to Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae in Hematologic Malignancy: A Retrospective Study from Central South China. Microb Drug Resist. 2021;27(6):800-808. doi: 10.1089/mdr.2020.0033.
36.Abbasi Montazeri E, Khosravi AD, Saki M, Sirous M, Keikhaei B, Seyed-Mohammadi S. Prevalence of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae Causing Bloodstream Infections in Cancer Patients from Southwest of Iran. Infect Drug Resist. 2020;6;13:1319-1326. doi: 10.2147/IDR.S254357.
37.Paul M, Bhatia M, Rekha US; Diksha 1, Omar BJ, Gupta P. Microbiological Profile of Blood Stream Infections in Febrile Neutropenic Patients at a Tertiary Care Teaching Hospital in Rishikesh, Uttarakhand. J Lab Physicians. 2020;12(2):147-153. doi: 10.1055/s-0040-1716661.
38.Patel HG, Tabassum S, Shaikh S. E. coli Sepsis: Red Flag for Colon Carcinoma-A Case Report and Review of the Literature. Case Rep Gastrointest Med. 2017:2570524. doi: 10.1155/2017/2570524.
39.Ota A, Morita S, Matsuoka A, Shimokata T, Maeda O, Mitsuma A, Yagi T, Asahara T, Ando Y. Detection of bacteria in blood circulation in patients receiving cancer chemotherapy. Int J ClinOncol. 2020;25(1):210-215. doi: 10.1007/s10147-019-01521-y.
40.Bhat S, Muthunatarajan S, Mulki SS, Archana Bhat K, Kotian KH. Bacterial Infection among Cancer Patients: Analysis of Isolates and Antibiotic Sensitivity Pattern. Int J Microbiol. 2021;7;2021:8883700. doi: 10.1155/2021/8883700.
41.Ghosh S, Chakraborty M, Samanta S, Sinha N, Saha S, Chattopadhyay A, et al. Analysis of blood stream infections, antibiograms and clinical outcomes in haematological patients with febrile neutropenia: data from a tertiary care haematology institute in India. Ann Hematol. 2021;100(2):395-403. doi: 10.1007/s00277-020-04324-8.
42.Diekema DJ, Hsueh PR, Mendes RE, Pfaller MA, Rolston KV, Sader HS, Jones RN. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother. 2019;24;63(7):e00355-19. doi: 10.1128/AAC.00355-19.
43.Sierra J, Díaz MV, de JesúsGarcía M, Finello M, Suasnabar DF, Richetta L, Toranzo A, Hernández D, Cometto MA, Vázquez SM, Caeiro JP, Saad EJ. Infecciones del torrente sanguine en pacientes oncológicos [Bloodstream infections in cancer patients]. Medicina (B Aires). 2020;80(4):329-338.
44.Royo-Cebrecos C, Gudiol C, Ardanuy C, Pomares H, Calvo M, Carratalà J. A fresh look at polymicrobial bloodstream infection in cancer patients. PLoS One. 2017;24;12(10):e0185768. doi: 10.1371/journal.pone.0185768.
45.Goldman S, Itshaki O, Shochat T, Gafter-Gvili A, Yahav D, Rubinovitch B, Shepshelovich D. Risk Factors and Outcome of Polymicrobial Bacteremia: A Retrospective Cohort Study. Isr Med Assoc J. 2020;22(5):279-284.
46.Agrawal SK, Gautam H, Choudhary AH, Das BK, Kumar L, Kapil A. Central Line-associated Bloodstream Infections in Cancer Patients: An Experience from a Tertiary Care Cancer Centre. Indian J Med Microbiol. 2019;37(3):376-380. doi: 10.4103/ijmm.IJMM_19_352.
47. Soares, CRP., Magalhães, V., Araújo, PSR. Coexistence of blaTEM, blaCTX, blaKPC, blaNDM, blaSIM e blaOXA-48 in polymicrobial bloodstream isolates from a patient with acute myeloid leukemia. Research, Society and Development, 2021;10(5)e39310514985. doi: 10.33448/rsd-v10i5.14985.
48.Carlesse F, Cappellano P, Quiles MG, Menezes LC, Petrilli AS, Pignatari AC. Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients. BMC Infect Dis. 2016;1;16(1):462. doi: 10.1186/s12879-016-1792-8.
49.Fentie A, Wondimeneh Y, Balcha A, Amsalu A, Adankie BT. Bacterial profile, antibiotic resistance pattern and associated factors among cancer patients at University of Gondar Hospital, Northwest Ethiopia. Infect Drug Resist. 2018;8;11:2169-2178. doi: 10.2147/IDR.S183283.
50.Vahedian-Ardakani HA, Moghimi M, Shayestehpour M, Doosti M, Amid N. Bacterial Spectrum and Antimicrobial Resistance Pattern in Cancer Patients with Febrile Neutropenia. Asian Pac J Cancer Prev. 2019;25;20(5):1471-1474. doi: 10.31557/APJCP.2019.20.5.1471.
51.Islas-Muñoz B, Volkow-Fernández P, Ibanes-Gutiérrez C, Villamar-Ramírez A, Vilar-Compte D, Cornejo-Juárez P. Bloodstream infections in cancer patients. Risk factors associated with mortality. Int J Infect Dis. 2018;71:59-64. doi: 10.1016/j.ijid.2018.03.022.
52. Kang CI, Chung DR, Ko KS, Peck KR, Song JH; Korean Network for Study of Infectious Diseases. Risk factors for infection and treatment outcome of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae bacteremia in patients with hematologic malignancy. Ann Hematol. 2012;91(1):115-21. doi: 10.1007/s00277-011-1247-7.
53.Zhang Q, Gao HY, Li D, et al. Clinical outcome of bloodstream infection by Escherichia coli in cancer patients with / without biofilm formation: a single center retrospective study. Infect Drug Resist. 2019;12:359–371. doi: 10.2147 / IDR.S192072
54.Tawfick MM, Alshareef WA, Bendary HA, Elmahalawy H, Abdulall AK. The emergence of carbapenemaseblaNDM genotype among carbapenem-resistant Enterobacteriaceae isolates from Egyptian cancer patients. Eur J ClinMicrobiol Infect Dis. 2020;39(7):1251-1259. doi: 10.1007/s10096-020-03839-2.
55.Satlin MJ, Calfee DP, Chen L, Fauntleroy KA, Wilson SJ, Jenkins SG, Feldman EJ, Roboz GJ, Shore TB, Helfgott DC, Soave R, Kreiswirth BN, Walsh TJ. Emergence of carbapenem-resistant Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leuk Lymphoma. 2013;54(4):799-806. doi: 10.3109/10428194.2012.723210.
56.Nordmann P, Poirel L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin Infect Dis. 2019;13;69(Suppl 7):S521-S528. doi: 10.1093/cid/ciz824.
57.Tarafdar F, Jafari B, Azimi T. Evaluating the antimicrobial resistance patterns and molecular frequency of blaoxa-48 and blaGES-2 genes in Pseudomonas aeruginosa and Acinetobacter baumannii strains isolated from burn wound infection in Tehran, Iran. New Microbes New Infect. 2020;23;37:100686. doi: 10.1016/j.nmni.2020.100686.
58. Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, Amyes SG, Livermore DM. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27(4):351-3. doi: 10.1016/j.ijantimicag.2006.01.004.
59.Hou C, Yang F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. Int J Clin Exp Med. 2015;15;8(8):13859-63.
60.Sah R, Khadka S, Shrestha GS, Acharya S, Aryal D, Shrestha P, Kattel HP, Shah NP, Pokhrel BM, Singh YP, Rijal B, Erdem H. Detection of Pan drug resistance OXA-48 producing Providencia in an ICU patient for the first time in Nepal. Antimicrob Resist Infect Control. 2019;15;8:155. doi: 10.1186/s13756-019-0608-1.
61. Hashem H, Hanora A, Abdalla S, Shaeky A, Saad A. Dissemination of metallo-β-lactamase in Pseudomonas aeruginosa isolates in Egypt: mutation in blaVIM-4. APMIS. 2017;125(5):499-505. doi: 10.1111/apm.12669.
62. Santos AL, Dos Santos AP, Ito CRM, Queiroz PHP, de Almeida JA, de Carvalho Júnior MAB, de Oliveira CZ, Avelino MAG, Wastowski IJ, Gomes GPLA, Souza ACSE, Vasconcelos LSNOL, Santos MO, da Silva CA, Carneiro LC. Profile of Enterobacteria Resistant to Beta-Lactams. Antibiotics (Basel). 2020;15;9(7):410. doi: 10.3390/antibiotics9070410.
63. Jácome PRLA, Alves LR, Jácome-Júnior AT, Silva MJBD, Lima JLDC, Araújo PSR, Lopes ACS, Maciel MAV. Detection of blaSPM-1, blaKPC, blaTEM and blaCTX-M genes in isolates of Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella spp. from cancer patients with healthcare-associated infections. J Med Microbiol. 2016;65(7):658-665. doi: 10.1099/jmm.0.000280.
64.Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A. Worldwide Epidemiology and Antibiotic Resistance of Staphylococcus aureus. Curr Top Microbiol Immunol. 2017;409:21-56. doi: 10.1007/82_2016_3.
65.Li Z, Zhuang H, Wang G, Wang H, Dong Y. Prevalence, predictors, and mortality of bloodstream infections due to methicillin-resistant Staphylococcus aureus in patients with malignancy: systemic review and meta-analysis. BMC Infect Dis. 2021;14;21(1):74. doi: 10.1186/s12879-021-05763-y.
66.Atmaca O, Zarakolu P, Karahan C, Cakır B, Unal S. Hacettepe Üniversitesi Erişkin ve Onkoloji Hastanelerinde yatan hastalarda saptanan metisiline dirençli Staphylococcus aureus bakteriyemilerinde risk faktörleri (2004-2011), antibiyotik kullanımı ve izolatların antimikrobiyal duyarlılıkları: Yuvalandırılmış olgu-kontrol çalışması [Risk factors and antibiotic use in methicillin-resistant Staphylococcus aureus bacteremia in hospitalized patients at Hacettepe University Adult and Oncology Hospitals (2004-2011) and antimicrobial susceptibilities of the isolates: a nested case-control study]. Mikrobiyol Bul. 2014;48(4):523-37. Turkish. doi: 10.5578/mb.8280.
67.Amarnani R, Rapose A. Colon cancer and enterococcus bacteremia co-affection: A dangerous alliance. J Infect Public Health. 2017;10(5):681-684. doi: 10.1016/j.jiph.2016.09.009. Epub 2017 Jan 29.
68.Alves J, Palma P, Azevedo D, Rello J. Candidemia in the patient with malignancy. Hosp Pract (1995). 2018;46(5):246-252. doi: 10.1080/21548331.2018.1508290.
69.Wu PF, Liu WL, Hsieh MH, Hii IM, Lee YL, Lin YT, Ho MW, Liu CE, Chen YH, Wang FD. Epidemiology and antifungal susceptibility of candidemia isolates of non-albicans Candida species from cancer patients. Emerg Microbes Infect. 2017;11;6(10):e87. doi: 10.1038/emi.2017.74.
70.Tang HJ, Liu WL, Lin HL, Lai CC. Epidemiology and prognostic factors of candidemia in cancer patients. PLoS One. 2014;5;9(6):e99103. doi: 10.1371/journal.pone.0099103.
71.Guo LN, Yu SY, Xiao M, Yang CX, Bao CM, Yu YH, Ye LY, Yang Y, Zhang G, Liu J, Liang GW, Min R, Zhu Y, Lei H, Liu YL, Liu LJ, Hu YJ, Hsueh PR, Xu YC. Species Distribution and Antifungal Susceptibility of Invasive Candidiasis: A 2016-2017 Multicenter Surveillance Study in Beijing, China. Infect Drug Resist. 2020;20;13:2443-2452. doi: 10.2147/IDR.S255843.
72.Shekari Ebrahim Abad H, Zaini F, Kordbacheh P, Mahmoudi M, Safara M, Mortezaee V. In Vitro Activity of Caspofungin Against Fluconazole-Resistant Candida Species Isolated From Clinical Samples in Iran. Jundishapur J Microbiol. 2015;27;8(6):e18353. doi: 10.5812/jjm.18353v2.
73.Chapman B, Slavin M, Marriott D, Halliday C, Kidd S, Arthur I, Australian and New Zealand Mycoses Interest Group. Changing epidemiology of candidaemia in Australia. J Antimicrob Chemother. 2017;1;72(4):1103-1108. doi: 10.1093/jac/dkw422.
74.Malani AN, Kerr LE, Kauffman CA. Voriconazole: How to Use This Antifungal Agent and What to Expect. Semin Respir Crit Care Med. 2015;36(5):786-95. doi: 10.1055/s-0035-1562903.
75.Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb Perspect Med. 2014;10;5(7):a019752. doi: 10.1101/cshperspect.a019752.
76.Bibi M, Murphy S, Benhamou RI, Rosenberg A, Ulman A, Bicanic T, Fridman M, Berman J. Combining Colistin and Fluconazole Synergistically Increases Fungal Membrane Permeability and Antifungal Cidality. ACS Infect Dis. 2021;20. doi: 10.1021/acsinfecdis.0c00721.
77.Sharafutdinov, I.S. et al. Increasing Susceptibility of Drug-Resistant Candida albicans to Fluconazole and Terbinafine by 2(5H)-Furanone Derivative. Molecules. 2020;25(3):642. doi: 10.3390/molecules25030642
78.Berkow E.L., Lockhart S.R. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017;10:237–245. doi: 10.2147/IDR.S118892.