Azzam, F., Siqueira, E., Fort, S., Hassaini, R., Pignon, F., Travelet, C., Putaux J.-L, Jean, B., Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals, Biomac. (2016), 17:2112-2119(https://DOI: 10.1021/acs.biomac.6b00344).
Berger, J., Reist, M., Mayer, J.M., Felt, O., Gurny, R., Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications, Eur. J. Pharmac. Biopharmac. (2004), 57:35-52(https://doi.org/10.1016/S0939-6411(03)00160-7).
Betancor, L., López-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, G.D-O.C., Férnandes-Lafunte, R., Guisán, J.M., Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions, Enzy. Microb. Technol. (2006), 39:877-882(https://doi.org/10.1016/j.enzmictec.2006.01.014).
Brito, S.L., Pereira, F.V., Putaux, J.-L., Jean, B., Preparation, morphology and structure of cellulose nanocrystals from bamboo fibers, Cellulose (2012), 19:1527–1536(https://doi.org/10.1007/s10570-012-9768-9).
Chen, Z., Mo, X., He, C., Wang, H., Intermolecular interactions um electrospun collagen-chitosan complex nanofibers, Carbohyd. Polymers (2008), 72:410–418 (https://doi.org/10.1016/j.carbpol.2007.09.018).
Chinga-Carrasco, G., Potential and Limitations of Nanocelluloses as Components in Biocomposite Inks for Three-Dimensional Bioprinting and for Biomedical Devices, Biomac. (2018), 19:701-711(https://doi.org/10.1021/acs.biomac.8b00053).
Czaja, W.K., Young, D. J., Kawecki, M., Brown, R.M., The Future Prospects of Microbial Cellulose in Biomedical Applications, Biomac. 8 (2007), 1-12(https://doi.org/10.1021/bm060620d).
Dan, Y., Liu, O., Liu, Y., Zhang, Y.-Y., Li, S., Feng, X.-B., Shao, Z.-W., Yang, C., Yang, S.-H., Hong, J.-B., Development of Novel Biocomposite Scaffold of Chitosan-Gelatin/Nanohydroxyapatite for Potential Bone Tissue Engineering Applications, Nano. Res. Let. (2016) 11 (https://doi.org/10.1186/s11671-016-1669-1).
De France, K.J., Hoare, T., Cranston, E.D., Review of Hydrogels and Aerogels Containing Nanocellulose, Chem. Mater. (2017), 29:4609-4631(https://doi.org/10.1021/acs.chemmater.7b00531).
Domingues, R.M.A., Gomes, M.E., Reis, R.L., The Potential of Cellulose Nanocrystals in Tissue Engineering Strategies, Biomac. (2014), 15:2327-2346(https://doi.org/10.1021/bm500524s).
Donati, I., Holtan, S., Mørch, Y.A., Borgogna, M., Dentini, M., Skjåk-Bræk, G., New Hypothesis on the Role of Alternating Sequences in Calcium-Alginate Gels, Biomacromolecules (2005), 6:1031-1040 (https://doi.org/10.1021/bm049306e).
French, A.D., Glucose, not cellobiose, is the repeating unit of cellulose and why that is importante, Cellulose (2017), 24:4605-4609(https://doi.org/10.1007/s10570-017-1450-3).
French, A.D., Idealized powder diffraction patterns for cellulose polymorphs, Cellulose (2014), 21:885-896(https://doi.org/10.1007/s10570-013-0030-4).
Gabrovska, K., Marinov, I., Godjevargova, T., Portaccio, M., Lepore, M., Grano V., Diano, N., Mita, D. G., The influence of the support nature on the kinetics parameters, inhibition constants and reactivation of immobilized acetylcholinesterase, Int. J. Biol. Macromol. (2008), 43: 339-345(https://doi.org/10.1016/j.ijbiomac.2008.07.006).
Han, J., Zhou, Z., Yin, R., Yang, D., Nie, J., Alginate–chitosan/hydroxyapatite polyelectrolyte complex porous scaffolds: Preparation and characterization, Int. J. Biol. Macromol. (2010), 46:199-205(https://doi.org/10.1016/j.ijbiomac.2009.11.004).
Isaac, A., Barboza, V., Sket, F.I., D’Almeida, J.R.M., Montoro, L.A., Hilger, A., Manke, I., Towards a deeper understanding of structural biomass recalcitrance using phase-contrast tomography, Biotechnol. Biofuels (2015), 10:8-40(https://doi.org/10.1186/s13068-015-0229-8).
Isogai, A., Saito, T., Fukuzumi, H., TEMPO-oxidized cellulose nanofibers, Nanoscale (2011), 3:71-85(https://doi.org/10.1039/C0NR00583E).
JCBN (1983) Symbols for specifying the conformation of polysaccharide chains. Recommendations 1981, Eur J Biochem, 131, 5–7; Pure Appl Chem, 55, 1269–1272.
JCBN (1982) Polysaccharide nomenclature recommendations 1980* Pure Appl Chem, 54, 1523–1526; J Biol Chem, 257, 3352–3354.
Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., Dorris, A., Nanocelluloses: A New Family of Nature‐Based Materials, Ang. Chem. Int. Ed. (2011), 50:5438-5466(https://doi.org/10.1002/anie.201001273).
Kouwijzer, M.L.C.E., van Euck, B.P., Kooijman, H., Kroon, J., An extension of the GROMOS force field for carbohydrates, resulting in improvement of the crystal structure determination of α-D-galactose, Acta Crystalloogr Sect B (1995), 51:209–220(https://doi.org/10.1107/S0108768194011262).
Kumar, A., Rao, K.M., Han, S.S., Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications, Chem. Eng. J. (2017), 317:119-131(https://doi.org/10.1016/j.cej.2017.02.065).
Lahiji, R.R., Xu, X., Reifenberger, R., Raman, A., Rudie, A., Moon, R.J., Atomic Force Microscopy Characterization of Cellulose Nanocrystals, Langmuir (2010), 26:4480-4488(https://doi.org/10.1021/la903111j).
Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., Grondahl, L., Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS, Biomac. (2007), 8:2533-2541(https://doi: 10.1021/bm070014y).
Li, X., Xie, H., Lin, J., Xie, W., Ma, X., Characterization and biodegradation of chitosan–alginate polyelectrolyte complexes, Pol. Degr. Stab. (2009), 94:1-6(https://doi.org/10.1016/j.polymdegradstab.2008.10.017).
Li, L., Fang, Y., Vreeker, R., Appelqvist, I., Reexamining the Egg-Box Model in Calcium-Alginate Gels with X-ray Diffraction Biomacromolecules (2007), 8:464-468(https://doi.org/10.1021/bm060550a).
Li, Z., Ramay, H.R., Hauch, K.D., Xiao, D., Zhang, M., Chitosan–alginate hybrid scaffolds for bone tissue engineering, Biomater. (2005), 26:3919-3928(https://doi.org/10.1016/j.biomaterials.2004.09.062).
Lin, N. and Dufresne, A., Nanocellulose in biomedicine: Current status and future prospect, Eur. Pol. J. (2014), 59:302-325(https://doi.org/10.1016/j.eurpolymj.2014.07.025).
Lohani, A., Singh, G., Bhattacharya, S.S., Verma, A., Interpenetrating Polymer Networks as Innovative Drug Delivery Systems, J. Drug Deliv. (2014), 1-11(https://doi.org/10.1155/2014/583612).
Mi, F.-L., Sung, H.-W., Shyu, S.-S., Drug release from chitosan–alginate complex beads reinforced by a naturally occurring cross-linking agent, Carbohydr Pol. (2002), 48:61-72(https://doi.org/10.1016/S0144-8617(01)00212-0).
Murata-Kamiya, N., Kamiya, H., Kaji, H., Kasai, H., Mutational specificity of glyoxal, a product of DNA oxidation, in the lacI gene of wild-type Escherichia coli W3110, Mut. Res. Fundam. Mol. Mech. Mutag. (1997), 377:255-262(https://doi.org/10.1016/S0027-5107(97)00083-3).
Nagahama, H., Maeda, H., Kashiki, T., Jayakumar, R., Furuike, T., Tamura, H., Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel, Carbohydrate Polymers (2009), 76:255-260(https://doi.org/10.1016/j.carbpol.2008.10.015).
Naseri, N., Deepa, B., Mathew, A.P., Oksman, K., Girandon, L., Nanocellulose-Based Interpenetrating Polymer Network (IPN) Hydrogels for Cartilage Applications, Biomac. (2016), 17:3714-3723(https://doi.org/10.1021/acs.biomac.6b01243).
Nishiyama, Y., Langan, P., Chanzy, H., Crystal structure and hydrogen-bonding system in cellulose Ibeta from synchrotron X-ray and neutron fiber diffraction, J Am Chem Soc (2002), 124:9074–9082(https://doi.org/10.1021/ja0257319).
Pääkkö, M., Ankerfors, M., Kosonen, H., Nykänen, A., Ahola, S., Österberger, M., Ruokolainen, J., Laine, J., Larsson, P.T., Ikkala, O., Lindström, T., Enzymatic Hydrolysis Combined with Mechanical Shearing and High-Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong Gels, Biomac. (2007), 8:1934-1941(https://doi.org/10.1021/bm061215p).
Rani, M., Agarwal, A., Negi, Y.S., Characterization and Biodegradation Studies for Interpenetrating Polymeric Network (IPN) of Chitosan-Amino Acid Beads, J. Biomater. Nanobiotech. (2011), 2:71–84(https://doi:10.4236/jbnb.2011.21010).
Rashad, A., Mustafa, K., Heggset, E.B., Syverud, K., Cytocompatibility of Wood-Derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry, Biomac. (2017), 18:1238−1248(https://doi.org/10.1021/acs.biomac.6b01911).
Reddy, K.O., Guduri, B.R., Varada Rajulu, A. Structural characterization and tensile properties of Borassus fruit fibers, J Appl. Polym. Sci. (2009), 114:603-611(https://doi.org/10.1002/app.30584).
Rinaudo, M., Main properties and current applications of some polysaccharides as biomaterials, Pol. Inter. (2008), 57:397-430(https://doi.org/10.1002/pi.2378).
Saito, T., Kimura, S., Nishiyma, Y., Isogai, A., Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose, Biomac. (2007), 8:2485-2491(https://doi.org/10.1021/bm0703970).
Saito, T., Isogai, A., TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions, Biomac. (2004), 5:1983-1989(https://doi.org/10.1021/bm0497769).
Senel, S., Ikinci, G., Kas, S., Yousefi-Rad, A., Sargon, M.F., Hincal, A.A., Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery, Inter. J. Pharmac. (2000), 193:197-203(https://doi.org/10.1016/S0378-5173(99)00334-8).
Senna, A.M., Botaro, V.R., Biodegradable hydrogel derived from cellulose acetate and EDTA as a reduction substrate of leaching NPK compound fertilizer and water retention in soil, J. Contr. Rel. (2017), 260:194-201(https://doi.org/10.1016/j.jconrel.2017.06.009).
Senna, A.M., Novack, K.M., Botaro, V.R., Synthesis and characterization of hydrogels from cellulose acetate by esterification crosslinking with EDTA dianhydride, Carbohyd. Pol. (2014), 114:260-268(https://doi.org/10.1016/j.carbpol.2014.08.017).
Siqueira, P., Siqueira, E., de Lima, A., Siqueira, G., Pinzón-Garcia, A., Lopes, A., Segura, M., Isaac, A., Pereira, F., Botaro, V., Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing, Nanomat. (2019), 9:1-22(https://doi.org/10.3390/nano9010078).
Siqueira, E.J.; and Botaro, V.R., Luffa cylindrica fibres/vinylester matrix composites: Effects of 1,2,4,5-benzenetetracarboxylic dianhydride surface modification of the fibres and aluminum hydroxide addition on the properties of the composites, Compos. Sci. Tech. (2013), 82:76-83(https://doi.org/10.1016/j.compscitech.2013.04.012).
Smitha, B., Sridhar, S., Khan, A.A., Chitosan–sodium alginate polyion complexes as fuel cell membranes, Eur. Polym. J. (2005), 41:1859-1866(https://doi.org/10.1016/j.eurpolymj.2005.02.018).
Sun, B., Zhang, M., Hou, Q., Liu, R., Wu, T., Si, C., Further characterization of cellulose nanocrystal (CNC) preparation from sulfuric acid hydrolysis of cotton fibers, Cellulose (2016), 23:439–450(https://doi.org/10.1007/s10570-015-0803-z).
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C., Characteristics of hemicellulose, cellulose and lignin pyrolysis, Fuel (2007), 86:1781-1788(https://doi.org/10.1016/j.fuel.2006.12.013).
Zeng, J., Hu, F., Cheng, Z., Wang, B., Chen, K., Isolation and rheological characterization of cellulose nanofibrils (CNFs) produced by microfluidic homogenization, ball-milling, grinding and refining, Cellulose (2021), 28:3389–3408(https://doi.org/10.1007/s10570-021-03702-3).
Zhou, C., Wu, Q., Yue, Y., Zhang, Q., Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels, J. Coll. Int. Sci. (2011), 353:116-123(https://doi.org/10.1016/j.jcis.2010.09.035).