Although computing the transient response of fractional oscillators, characterized by second-order differential equations with fractional derivatives for the damping term, to external loadings has been studied, most existing methodologies have dealt with cases with either restricted fractional orders or simple external loadings. In this paper, considering complicated irregular loadings acting on oscillators with any fractional order between 0 and 1, efficient frequency/Laplace domain methods for getting transient responses are developed. The proposed methods are based on pole-residue operations. In the frequency domain approach, "artificial" poles located along the imaginary axis of complex plane are designated. In the Laplace domain approach, the "true" poles are extracted through two phases: (1) a discrete impulse response function (IRF) is produced by taking the inverse Fourier transform of the corresponding frequency response function (FRF) that is readily obtained from the exact TF, and (2) a complex exponential signal decomposition method, i.e., the Prony-SS method, is invoked to extract the poles and residues. Once the poles/residues of the system are known, those of the response can be determined by simple pole-residue operations. Sequentially, the response time history is readily obtained. Two fractional oscillators with rational and irrational derivatives, respectively, subjected to sinusoidal and complicated earthquake loading are presented to illustrate the procedure and verify the correctness of the proposed method. The verification is conducted by comparing the results from both the Laplace and the frequency domain approaches with those from the numerical Duhamel integral method.