1. Maglio, S., Park, C., Tognarelli, S., Menciassi, A. & Roche, E. T. High-Fidelity Physical Organ Simulators: From Artificial to Bio-Hybrid Solutions. IEEE Trans. Med. Robot. Bionics 3, 349–361 (2021).
2. Park, C. et al. An organosynthetic dynamic heart model with enhanced biomimicry guided by cardiac diffusion tensor imaging. Sci. Robot. 5, (2020).
3. Bhattacharya, D., J.V. Ali, S., Cheng, L. K. & Xu, W. RoSE: A Robotic Soft Esophagus for Endoprosthetic Stent Testing. Soft Robot. (2020) doi:10.1089/soro.2019.0205.
4. Dang, Y. et al. SoGut: A Soft Robotic Gastric Simulator. Soft Robot. (2020) doi:10.1089/soro.2019.0136.
5. Ranunkel, O., Güder, F. & Arora, H. Soft Robotic Surrogate Lung. ACS Appl. Bio Mater. 2, 1490–1497 (2019).
6. Horvath, M. A. et al. An organosynthetic soft robotic respiratory simulator. APL Bioeng. 4, (2020).
7. Lu, X., Xu, W. & Li, X. A Soft Robotic Tongue-Mechatronic Design and Surface Reconstruction. IEEE/ASME Trans. Mechatronics 22, 2102–2110 (2017).
8. Horvath, M. A. et al. Design and Fabrication of a Biomimetic Circulatory Simulator with Overlaid Flow and Respiration Mechanism for Single Ventricle Physiology. in Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics vols 2020-Novem 74–79 (2020).
9. Nkomo, V. T. et al. Burden of valvular heart diseases: a population-based study. Lancet 368, 1005–1011 (2006).
10. Mrsic, Z., Hopkins, S. P., Antevil, J. L. & Mullenix, P. S. Valvular Heart Disease. Primary Care - Clinics in Office Practice vol. 45 81–94 (2018).
11. Carabello, B. A. & Paulus, W. J. Aortic stenosis. The Lancet vol. 373 956–966 (2009).
12. Grossman, W., Jones, D. & McLaurin, L. P. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64 (1975).
13. Borlaug, B. A. & Paulus, W. J. Heart failure with preserved ejection fraction: Pathophysiology, diagnosis, and treatment. Eur. Heart J. 32, 670–679 (2011).
14. Borlaug, B. A. Evaluation and management of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 17, 559–573 (2020).
15. Taniguchi, T. et al. Sudden death in patients with Severe Aortic Stenosis: Observations from the CURRENT AS registry. J. Am. Heart Assoc. 7, (2018).
16. Otto, C. M. et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 143, e72–e227 (2021).
17. Brennan, J. M. et al. Long-term survival after aortic valve replacement among high-risk elderly patients in the United States: Insights from the society of thoracic surgeons adult cardiac surgery database, 1991 to 2007. Circulation vol. 126 1621–1629 (2012).
18. Jones, J. M. et al. Repeat heart valve surgery: Risk factors for operative mortality. J. Thorac. Cardiovasc. Surg. 122, 913–918 (2001).
19. Yarbrough, W. M. et al. Progressive induction of left ventricular pressure overload in a large animal model elicits myocardial remodelling and a unique matrix signature. J. Thorac. Cardiovasc. Surg. 143, 215–223 (2012).
20. Olver, T. D. et al. Western Diet-Fed, Aortic-Banded Ossabaw Swine: A Preclinical Model of Cardio-Metabolic Heart Failure. JACC Basic to Transl. Sci. 4, 404–421 (2019).
21. Torres, W. M. et al. Changes in Myocardial Microstructure and Mechanics With Progressive Left Ventricular Pressure Overload VISUAL ABSTRACT HIGHLIGHTS. J Am Coll Cardiol Basic Trans Sci. 5, 463–80 (2020).
22. Singh, G. K. Congenital Aortic Valve Stenosis. Children 6, 185–193 (2019).
23. Roberts, W. C. & Ko, J. M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111, 920–925 (2005).
24. O’Brien, K. D. Epidemiology and genetics of calcific aortic valve disease. in Journal of Investigative Medicine vol. 55 284–291 (2007).
25. Brantley, H. P., Nekkanti, R., Anderson, C. A. & Kypson, A. P. Three-dimensional echocardiographic features of unicuspid aortic valve stenosis correlate with surgical findings. Echocardiography (2012) doi:10.1111/j.1540-8175.2012.01740.x.
26. Moller, J. H., Nakib, A., Eliot, R. S. & Edwards, J. E. Symptomatic congenital aortic stenosis in the first year of life. J. Pediatr. (1966) doi:10.1016/s0022-3476(66)80116-6.
27. Singh, S. et al. Unicuspid unicommissural aortic valve: An extremely rare congenital anomaly. Texas Hear. Inst. J. (2015) doi:10.14503/THIJ-13-3634.
28. Baillargeon, B., Rebelo, N., Fox, D. D., Taylor, R. L. & Kuhl, E. The living heart project: A robust and integrative simulator for human heart function. Eur. J. Mech. A/Solids 48, 38–47 (2014).
29. Dassault Systèmes. SIMULIA Living Heart Human Model User Guide. (2017).
30. Rosalia, L., Ozturk, C., Van Story, D., Horvath, M. & Roche, E. T. Object-oriented lumped-parameter modelling of the cardiovascular system for physiological and pathophysiological conditions. Adv. theory simulations 4, (2021).
31. Rosalia, L., Ozturk, C. & Roche, E. T. Lumped-Parameter and Finite Element Modeling of Heart Failure with Preserved Ejection Fraction. J. Vis. Exp. 168, (2021).
32. Rajani, R., Hancock, J. & Chambers, J. B. The art of assessing aortic stenosis. Heart vol. 98 (2012).
33. Baumgartner, H. et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Hear. journal. Cardiovasc. Imaging 18, 254–275 (2017).
34. Iung, B. et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on valvular heart disease. Eur. Heart J. 24, 1231–1243 (2003).
35. Mishra, S. & Kass, D. A. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nature Reviews Cardiology 1–24 (2021) doi:10.1038/s41569-020-00480-6.
36. Pibarot, P. et al. Moderate Aortic Stenosis and Heart Failure With Reduced Ejection Fraction Can Imaging Guide Us to Therapy? (2019) doi:10.1016/j.jcmg.2018.10.021.
37. Azevedo, C. F. et al. Prognostic significance of myocardial fibrosis quantification by histopathology and magnetic resonance imaging in patients with severe aortic valve disease. J. Am. Coll. Cardiol. 56, 278–287 (2010).
38. Goldsmith, E. C., Bradshaw, A. D. & Spinale, F. G. Cellular mechanisms of tissue fibrosis. 2. Contributory pathways leading to myocardial fibrosis: Moving beyond collagen expression. Am. J. Physiol. - Cell Physiol. 304, (2013).
39. Zhu, Y. et al. Novel bicuspid aortic valve model with aortic regurgitation for hemodynamic status analysis using an ex vivo simulator. J. Thorac. Cardiovasc. Surg. 0, (2020).
40. Genet, M., Lee, L. C., Baillargeon, B., Guccione, J. M. & Kuhl, E. Modeling Pathologies of Diastolic and Systolic Heart Failure. Ann. Biomed. Eng. 44, 112–127 (2016).
41. Holman, D. M., Brionnaud, R. M. & Abiza, Z. Solution to industry benchmark problems with the lattice-Boltzmann code Xflow. European Congress on Computational Methods in Applied Sciences and Engineering (2012).
42. Ducros, F., Nicoud, F., Poinsot, T. & Dynamics, I. for C. F. Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries. (ICFD, Oxford University Computing Laboratory, 1998).
43. Mitchell, C. et al. Guidelines for Performing a Comprehensive Transthoracic Echocardiographic Examination in Adults: Recommendations from the American Society of Echocardiography. (2018) doi:10.1016/j.echo.2018.06.004.
44. Stypmann, J. et al. Echocardiographic assessment of global left ventricular function in mice. Laboratory Animals vol. 43 127–137 (2009).