1. ROSENBERG I H Sarcopenia: origins and clinical relevance. J Nutr,(1997).127(5 Suppl):990s-991s. https://dx.doi.org/10.1093/jn/127.5.990S
2. HILAL S, S PERNA, and C GASPARRI Comparison between Appendicular Skeletal Muscle Index DXA Defined by EWGSOP1 and 2 versus BIA Tengvall Criteria among Older People Admitted to the Post-Acute Geriatric Care Unit in Italy. 2020).12(6)https://dx.doi.org/10.1017/s0007114520002172
3. CRUZ-JENTOFT A J, J P BAEYENS, J M BAUER, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing,(2010).39(4):412-23. https://dx.doi.org/10.1093/ageing/afq034
4. ZHAO Y, Y ZHANG, Q HAO, et al. Sarcopenia and hospital-related outcomes in the old people: a systematic review and meta-analysis. Aging Clin Exp Res,(2019).31(1):5-14. https://dx.doi.org/10.1007/s40520-018-0931-z
5. NAVARRETE-REYES A P and J A AVILA-FUNES [Diabetes mellitus and the syndrome of frailty in the elderly]. Rev Invest Clin,(2010).62(4):327-32.
6. BIELORAI B and O PINHAS-HAMIEL Type 2 Diabetes Mellitus, the Metabolic Syndrome, and Its Components in Adult Survivors of Acute Lymphoblastic Leukemia and Hematopoietic Stem Cell Transplantations. Nutrients,(2018).18(6):32. https://dx.doi.org/10.3390/nu10050544
7. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care,(2019).42(Suppl 1):S13-s28. https://dx.doi.org/10.2337/dc19-S002
8. SAEEDI P, I PETERSOHN, P SALPEA, et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract,(2019).157:107843. https://dx.doi.org/10.1016/j.diabres.2019.107843
9. GUERRERO N, D BUNOUT, S HIRSCH, et al. Premature loss of muscle mass and function in type 2 diabetes. Diabetes Res Clin Pract,(2016).117:32-8. https://dx.doi.org/10.1016/j.jamda.2016.04.016
10. LEENDERS M, L B VERDIJK, L VAN DER HOEVEN, et al. Patients with type 2 diabetes show a greater decline in muscle mass, muscle strength, and functional capacity with aging. J Am Med Dir Assoc,(2013).14(8):585-92. https://dx.doi.org/10.1016/j.jamda.2013.02.006
11. KIM T N, M S PARK, S J YANG, et al. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care,(2010).33(7):1497-9. https://dx.doi.org/10.2337/dc09-2310
12. WELLS G, B SHEA, and J O'CONNELL The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses.
13. HIGGINS J P, S G THOMPSON, J J DEEKS, et al. Measuring inconsistency in meta-analyses. Bmj,(2003).327(7414):557-60. https://dx.doi.org/10.1136/bmj.327.7414.557
14. EGGER M, G DAVEY SMITH, M SCHNEIDER, et al. Bias in meta-analysis detected by a simple, graphical test. Bmj,(1997).315(7109):629-34. https://dx.doi.org/10.1136/bmj.315.7109.629
15. BEGG C B and M MAZUMDAR Operating characteristics of a rank correlation test for publication bias. Biometrics,(1994).50(4):1088-101.
16. TANAKA S, M TAKUBO, G KOHNO, et al. Inverse Correlation Between Grip Strength and Serum Phosphorus: A Retrospective Observational Study in Japanese Elderly with Poorly Controlled Type 2 Diabetes. 2020).5(2)https://dx.doi.org/10.1371/journal.pone.0233299
17. MIKI A, M HAMAGUCHI, M KUWAHATA, et al. Higher Serum Uric Acid is a Risk Factor of Reduced Muscle Mass in Men with Type 2 Diabetes Mellitus. Geriatr Gerontol Int,(2021).129(1):50-55. https://dx.doi.org/10.1111/ggi.13577
18. TUZUN S, S CIFCILI, M R DABAK, et al. Sarcopenia among Genders in Type 2 Diabetes Mellitus Patients Using Different Formulas of Bioimpedance Analysis. J Coll Physicians Surg Pak,(2018).28(8):586-589. https://dx.doi.org/10.21873/anticanres.12810
19. OSAKA T, M HAMAGUCHI, Y HASHIMOTO, et al. Decreased the creatinine to cystatin C ratio is a surrogate marker of sarcopenia in patients with type 2 diabetes. Diabetes Res Clin Pract,(2018).139:52-58. https://dx.doi.org/10.1016/j.diabres.2018.02.025
20. OH T J, S KANG, J E LEE, et al. Association between deterioration in muscle strength and peripheral neuropathy in people with diabetes. J Diabetes Complications,(2019).33(8):598-601. https://dx.doi.org/10.1507/endocrj.EJ19-0024
21. BITTEL A J, D C BITTEL, L J TUTTLE, et al. Explanators of Sarcopenia in Individuals With Diabesity: A Cross-Sectional Analysis. J Geriatr Phys Ther,(2017).40(2):86-94. https://dx.doi.org/10.1519/jpt.0000000000000076
22. FUKUDA T, R BOUCHI, T TAKEUCHI, et al. Association of diabetic retinopathy with both sarcopenia and muscle quality in patients with type 2 diabetes: a cross-sectional study. BMJ Open Diabetes Res Care,(2017).5(1):e000404. https://dx.doi.org/10.1111/acel.12613
23. KANG S and T J OH Sex differences in sarcopenia and frailty among community-dwelling Korean older adults with diabetes: The Korean Frailty and Aging Cohort Study. 2021).12(2):155-164. https://dx.doi.org/10.1007/s00223-020-00742-y
24. TAKAHASHI F and Y HASHIMOTO Habitual Miso (Fermented Soybean Paste) Consumption Is Associated with a Low Prevalence of Sarcopenia in Patients with Type 2 Diabetes: A Cross-Sectional Study. 2020).13(1)https://dx.doi.org/10.3390/nu13010072
25. SUNG M J and T S LIM Sarcopenia Is Independently Associated with the Degree of Liver Fibrosis in Patients with Type 2 Diabetes Mellitus. 2020).14(5):626-635. https://dx.doi.org/10.5009/gnl19126
26. SUGIMOTO K, H IKEGAMI, Y TAKATA, et al. Glycemic Control and Insulin Improve Muscle Mass and Gait Speed in Type 2 Diabetes: The MUSCLES-DM Study. J Am Med Dir Assoc,(2020)https://dx.doi.org/10.1016/j.arteri.2020.10.003
27. SEO D H, Y H LEE, S W PARK, et al. Sarcopenia is associated with non-alcoholic fatty liver disease in men with type 2 diabetes. Diabetes Metab,(2020).46(5):362-369. https://dx.doi.org/10.3390/nu11112636
28. SAZLINA S G, P Y LEE, Y M CHAN, et al. The prevalence and factors associated with sarcopenia among community living elderly with type 2 diabetes mellitus in primary care clinics in Malaysia. PLoS One,(2020).15(5):e0233299. https://dx.doi.org/10.20960/nh.03180
29. PECHMANN L M Sarcopenia in Type 2 Diabetes Mellitus: A Cross-Sectional Observational Study. J Diabetes Res,(2020).2020:7841390. https://dx.doi.org/10.1155/2020/6973469
30. NAKANISHI S, M IWAMOTO, H SHINOHARA, et al. Significance of body mass index for diagnosing sarcopenia is equivalent to slow gait speed in Japanese individuals with type 2 diabetes: Cross-sectional study using outpatient clinical data. 2020)https://dx.doi.org/10.1016/j.exger.2020.111022
31. MORI H, A KURODA, S YOSHIDA, et al. High prevalence and clinical impact of dynapenia and sarcopenia in Japanese patients with type 1 and type 2 diabetes: Findings from the Impact of Diabetes Mellitus on Dynapenia study. 2020)https://dx.doi.org/10.1507/endocrj.EJ20-0550
32. JUNG C H, Y Y CHO, D CHOI, et al. Relationship of Sarcopenia with Microcirculation Measured by Skin Perfusion Pressure in Patients with Type 2 Diabetes. Endocrinol Metab (Seoul),(2020).35(3):578-586. https://dx.doi.org/10.3803/EnM.2020.679
33. GORIAL F I, O S SAYYID, and S A AL OBAIDI Prevalence of sarcopenia in sample of Iraqi patients with type 2 diabetes mellitus: A hospital based study. Diabetes Metab Syndr,(2020).14(4):413-416. https://dx.doi.org/10.1016/j.cger.2020.04.010
34. DE FREITAS M M, V L P DE OLIVEIRA, T GRASSI, et al. Difference in sarcopenia prevalence and associated factors according to 2010 and 2018 European consensus (EWGSOP) in elderly patients with type 2 diabetes mellitus. Exp Gerontol,(2020).132:110835. https://dx.doi.org/10.1016/j.exger.2020.110835
35. CUI M, X GANG, G WANG, et al. A cross-sectional study: Associations between sarcopenia and clinical characteristics of patients with type 2 diabetes. Int J Mol Sci,(2020).99(2):e18708. https://dx.doi.org/10.3390/ijms21020494
36. CHEN F, S XU, Y WANG, et al. Risk Factors for Sarcopenia in the Elderly with Type 2 Diabetes Mellitus and the Effect of Metformin. 2020).2020:3950404. https://dx.doi.org/10.1093/jn/nxaa221
37. BERETTA M V, F F DANTAS FILHO, R E FREIBERG, et al. Sarcopenia and Type 2 diabetes mellitus as predictors of 2-year mortality after hospital discharge in a cohort of hospitalized older adults. Diabetes Res Clin Pract,(2020).159:107969. https://dx.doi.org/10.3760/cma.j.issn.0253-3758.2019.12.007
38. YANAGITA I, Y FUJIHARA, Y KITAJIMA, et al. A High Serum Cortisol/DHEA-S Ratio Is a Risk Factor for Sarcopenia in Elderly Diabetic Patients. J Endocr Soc,(2019).3(4):801-813. https://dx.doi.org/10.3390/jcm8030319
39. SUGIMOTO K, Y TABARA, H IKEGAMI, et al. Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus. 2019).10(6):1471-1479. https://dx.doi.org/10.1111/jdi.13070
40. OKAMURA T, Y HASHIMOTO, A MIKI, et al. High brain natriuretic peptide is associated with sarcopenia in patients with type 2 diabetes: a cross-sectional study of KAMOGAWA-DM cohort study. Endocr J,(2019).66(4):369-377. https://dx.doi.org/10.1186/s12877-019-1137-8
41. OGAMA N, T SAKURAI, S KAWASHIMA, et al. Association of Glucose Fluctuations with Sarcopenia in Older Adults with Type 2 Diabetes Mellitus. J Clin Med,(2019).8(3)https://dx.doi.org/10.1002/jcsm.12417
42. MORI H, A KURODA, M ISHIZU, et al. Association of accumulated advanced glycation end-products with a high prevalence of sarcopenia and dynapenia in patients with type 2 diabetes. 2019).10(5):1332-1340. https://dx.doi.org/10.1002/jcsm.12417
43. KAJI A and Y HASHIMOTO Sarcopenia is associated with tongue pressure in older patients with type 2 diabetes: A cross-sectional study of the KAMOGAWA-DM cohort study. 2019).19(2):153-158. https://dx.doi.org/10.1111/ggi.13577
44. FUNG F Y, Y L E KOH, R MALHOTRA, et al. Prevalence of and factors associated with sarcopenia among multi-ethnic ambulatory older Asians with type 2 diabetes mellitus in a primary care setting. BMC Geriatr,(2019).19(1):122. https://dx.doi.org/10.1016/j.dsx.2019.05.007
45. TRIERWEILER H, G KISIELEWICZ, T HOFFMANN JONASSON, et al. Sarcopenia: a chronic complication of type 2 diabetes mellitus. Diabetol Metab Syndr,(2018).10:25. https://dx.doi.org/10.1186/s13098-018-0326-5
46. MURATA Y, Y KADOYA, S YAMADA, et al. Sarcopenia in elderly patients with type 2 diabetes mellitus: prevalence and related clinical factors. Diabetol Int,(2018).9(2):136-142. https://dx.doi.org/10.1007/s13340-017-0339-6
47. MURAI J and H NISHIZAWA Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. 2018).17(1):112. https://dx.doi.org/10.1055/a-0672-1007
48. HASHIMOTO Y, A KAJI, R SAKAI, et al. Sarcopenia is associated with blood pressure variability in older patients with type 2 diabetes: A cross-sectional study of the KAMOGAWA-DM cohort study. Geriatr Gerontol Int,(2018).18(9):1345-1349. https://dx.doi.org/10.1111/ggi.13487
49. BOUCHI R, T FUKUDA, T TAKEUCHI, et al. Sarcopenia is associated with incident albuminuria in patients with type 2 diabetes: A retrospective observational study. J Diabetes Investig,(2017).8(6):783-787. https://dx.doi.org/10.1111/jdi.12636
50. WANG T, X FENG, J ZHOU, et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep,(2016).6:38937. https://dx.doi.org/10.1038/srep38937
51. TANAKA K, I KANAZAWA, and T SUGIMOTO Reduction in Endogenous Insulin Secretion is a Risk Factor of Sarcopenia in Men with Type 2 Diabetes Mellitus. Calcif Tissue Int,(2015).97(4):385-90. https://dx.doi.org/10.1007/s00223-015-9990-8
52. PARK S W, B H GOODPASTER, E S STROTMEYER, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes,(2006).55(6):1813-8. https://dx.doi.org/10.2337/db05-1183
53. MUSCARITOLI M, S D ANKER, J ARGILéS, et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) "cachexia-anorexia in chronic wasting diseases" and "nutrition in geriatrics". Clin Nutr,(2010).29(2):154-9. https://dx.doi.org/10.1016/j.clnu.2009.12.004
54. FIELDING R A, B VELLAS, W J EVANS, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc,(2011).12(4):249-56. https://dx.doi.org/10.1016/j.jamda.2011.01.003
55. CHEN L K, L K LIU, J WOO, et al. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc,(2014).15(2):95-101. https://dx.doi.org/10.1016/j.jamda.2013.11.025
56. HUANG C Y, A C HWANG, L K LIU, et al. Association of Dynapenia, Sarcopenia, and Cognitive Impairment Among Community-Dwelling Older Taiwanese. Rejuvenation Res,(2016).19(1):71-8. https://dx.doi.org/ 10.1089/rej. 2015.1710
57. DUMONT P, V ROYER, T PASCAL, et al. Growth kinetics rather than stress accelerate telomere shortening in cultures of human diploid fibroblasts in oxidative stress-induced premature senescence. FEBS Lett,(2001).502(3):109-12. https://dx.doi.org/10.1016/s0014-5793(01)02679-5
58. YAMADA M, S NISHIGUCHI, N FUKUTANI, et al. Prevalence of sarcopenia in community-dwelling Japanese older adults. J Am Med Dir Assoc,(2013).14(12):911-5. https://dx.doi.org/10.1016/j.jamda.2013.08.015
59. OERTEL G Changes in human skeletal muscles due to ageing. Histological and histochemical observations on autopsy material. Acta Neuropathol,(1986).69(3-4):309-13. https://dx.doi.org/10.1007/bf00688309
60. NOMURA T, T ISHIGURO, M OHIRA, et al. Diabetic polyneuropathy is a risk factor for decline of lower extremity strength in patients with type 2 diabetes. J Diabetes Investig,(2018).9(1):186-192. https://dx.doi.org/10.1111/jdi.12658
61. KAUSHIK S, R SINGH, and A M CUERVO Autophagic pathways and metabolic stress. Diabetes Obes Metab,(2010).12 Suppl 2(0 2):4-14. https://dx.doi.org/10.1111/j.1463-1326.2010.01263.x
62. HORIO M, E IMAI, Y YASUDA, et al. GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis,(2013).61(2):197-203. https://dx.doi.org/10.1053/j.ajkd.2012.07.007
63. VAN DEN BERGHE G On the Neuroendocrinopathy of Critical Illness. Perspectives for Feeding and Novel Treatments. Am J Respir Crit Care Med,(2016).194(11):1337-1348. https://dx.doi.org/10.1164/rccm.201607-1516CI
64. SAITO K, T KASAI, Y NAGURA, et al. Corticotropin-releasing hormone receptor 1 antagonist blocks brain-gut activation induced by colonic distention in rats. Gastroenterology,(2005).129(5):1533-43. https://dx.doi.org/10.1053/j.gastro.2005.07.053
65. HIRSCHFELD H P, R KINSELLA, and G DUQUE Osteosarcopenia: where bone, muscle, and fat collide. 2017).28(10):2781-2790. https://dx.doi.org/10.1007 /s00198-017-4151-8
66. CEGLIA L and S S HARRIS Vitamin D and its role in skeletal muscle. Calcif Tissue Int,(2013).92(2):151-62. https://dx.doi.org/10.1007/s00223-012-9645-y
67. BISCHOFF-FERRARI H A, T DIETRICH, E J ORAV, et al. Higher 25-hydroxyvitamin D concentrations are associated with better lower-extremity function in both active and inactive persons aged > or =60 y. Am J Clin Nutr,(2004).80(3):752-8. https://dx.doi.org/10.1093/ajcn/80.3.752
68. REMELLI F, A VITALI, A ZURLO, et al. Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients,(2019).11(12)https://dx.doi.org/10.1111/nep.13678
69. ASCENZI F, L BARBERI, G DOBROWOLNY, et al. Effects of IGF-1 isoforms on muscle growth and sarcopenia. Aging Cell,(2019).18(3):e12954. https://dx.doi.org/10.1007/s00520-019-04767-4
70. WIEDMER P, T JUNG, J P CASTRO, et al. Sarcopenia - Molecular mechanisms and open questions. Ageing Res Rev,(2021).65:101200. https://dx.doi.org/10.1016/j.arr.2020.101200
71. HAN P, L KANG, Q GUO, et al. Prevalence and Factors Associated With Sarcopenia in Suburb-dwelling Older Chinese Using the Asian Working Group for Sarcopenia Definition. J Gerontol A Biol Sci Med Sci,(2016).71(4):529-35. https://dx.doi.org/10.1093/gerona/glv108
72. NELSON M E, M A FIATARONE, C M MORGANTI, et al. Effects of high-intensity strength training on multiple risk factors for osteoporotic fractures. A randomized controlled trial. Jama,(1994).272(24):1909-14. https://dx.doi.org/10.1001/jama.1994.03520240037038
73. NARANJO J D, J L DZIKI, and S F BADYLAK Regenerative Medicine Approaches for Age-Related Muscle Loss and Sarcopenia: A Mini-Review. Gerontology,(2017).63(6):580-589. https://dx.doi.org/10.1159/000479278
74. VASILAKI A, A MANSOURI, H VAN REMMEN, et al. Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell,(2006).5(2):109-17. https://dx.doi.org/10.1111/j.1474-9726. 2006. 00198. x
75. KHOSLA S, M J OURSLER, and D G MONROE Estrogen and the skeleton. Trends Endocrinol Metab,(2012).23(11):576-81. https://dx.doi.org/10.1016/j.tem. 2012.03.008
76. KACIMI R, C S LONG, and J S KARLINER Chronic hypoxia modulates the interleukin-1beta-stimulated inducible nitric oxide synthase pathway in cardiac myocytes. Circulation,(1997).96(6):1937-43. https: //dx.doi.org/ 10.1161/01. cir.96.6.1937