1. Coutts MP, Dolezal J. Some effects of bark cincturing on the physiology of Pinus radiata, and on Sirex attack. Aust Forest Res. 1966; 2: 17-28.
2. Morgan FD, Stewart NC. The biology and behavior of the wood-wasp Sirex noctilio F. In New Zealand. Trans Roy Soc Newland. 1966; 7(14):195-204.
3. Zylstra KE, Dodds KJ, Francese JA, Mastro V. Sirex noctilio in north America: the effect of stem-injection timing on the attractiveness and suitability of trap trees. Agr Forest Entomol. 2010; 12(3):243-250.
4. Hurley BP, Slippers B, Wingfield MJ. A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere. Agr Forest Entomol. 2007; 9(3): 159-171.
5. Li DP, Shi J, Luo YQ. Mutualism between the Eurasian woodwasp, Sirex noctilio (Hymenoptera: Siricidae) and its fungal symbiont Amylostereum areolatum (Russulales: Amylostereaceae). Acta Entomol Sin. 2015; 58(9): 1019- 1029.
6. Du WG, Jiao JW, Wang QY. Brief Report on Luring and Collecting Sirex nitobei by Trap Log. Heilongjiang Agr Sci. 2011; (5): 57-58.
7. Xiao GR, Wu J. The Siricid wood wasps of China (Hymenoptera, Symphyta). Sci Silva Sin. 1983; 19(zj): 1-29.
8. Wang M, Bao M, Ao TG, Ren LL, Luo YQ. Population distribution patterns and ecological niches of two Sirex species damaging Pinus sylvestris var. mongolica. Chinese J Appl Entomol. 2017; 54(6): 924-932.
9. Taylor KL. The Sirex woodwasp: ecology and control of an introduced forest insect. Australia: CSIRO, 1981.
10. Neumann FG, Morey JL, McKimm RJ. The Sirex wasp in Victoria. Bulletin-Department of Conservation, Forests and Lands, Victoria. 1987; 29: 41.
11. Coutts MP. Rapid physiological change in Pinus radiata following attack by Sirex noctilio and its associated fungus, Amylostereum sp. Aust J Sci. 1968; 30(5):275-277.
12. Bordeaux JM, Dean JFD. Susceptibility and Response of Pines to Sirex noctilio. In: Slippers B, Groot P, Wingfield MJ, editors. The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest. Dordrecht: Springer; 2012. p: 31-50.
13. Dodds KJ, Zylstra KE, Dubois GD, Hoebeke ER. Arboreal insects associated with herbicide-stressed Pinus resinosa and Pinus sylvestris used as Sirex noctilio trap trees in New York. Environ Entomol. 2012a; doi: 10.1603/EN12180.
14. Dodds KJ, de Groot P. Sirex, Surveys and Management: Challenges of having Sirex noctilio in North America. In: Slippers B, de Groot P, Wingfield MJ, editors. The Sirex Woodwasp and its Fungal Symbiont: Research and Management of a Worldwide Invasive Pest. Dordrecht: Springer; 2012b. p: 265-286.
15. Böröczky K1, Crook DJ, Jones TH, Kenny JC, Zylstra KE, Mastro VC, et al. Monoalkenes as Contact Sex Pheromone Components of the Woodwasp Sirex noctilio. J Chem Ecol. 2009; doi: 10.1007/s10886-009-9693-6.
16. Cooperband MF, Böröczky K, Hartness A, Jones TH, Zylstra KE, Tumlinson JH, et al. Male-Produced Pheromone in the European Woodwasp, Sirex noctilio. J Chem Ecol. 2012; doi: 10.1007/s10886-012-0060-7.
17. Hurley BP, Garnas J, Cooperband MF. Assessing trap and lure effectiveness for the monitoring of Sirex noctilio. Agr Forest Entomol. 2015; 17(1): 64-70.
18. Pilpel Y, Lancet D. The variable and conserved interfaces of modeled olfactory receptor proteins. Protein Sci. 1999; 8(5): 969-77.
19. Zacharuk RY. Ultrastructure and Function of Insect Chemosensilla. Annu Rev Entomol. 1980; 25(1): 27-47.
20. Steinbrecht RA. Pore structures in insect olfactory sensilla: A review of data and concepts. Int Journal Insect Morphol Embryo. 1997; 26(3-4): 229-245.
21. Leal WS. Pheromone reception. In: Schulz S, editor. The Chemistry of Pheromones and Other Semiochemicals II. Berlin: Springer; 2005. p: 1-36.
22. Leal WS. Odorant reception in insects: roles of receptors, binding proteins, and degrading enzymes. Annu Rev Entomol. 2013; doi: 10.1146/annurev-ento-120811-153635.
23. Benton R, Sachse S, Michnick SW, Vosshall LB. Atypical Membrane Topology and Heteromeric Function of Drosophila Odorant Receptors In Vivo. PLoS Biol. 2006; doi: 10.1371/journal.pbio.0040020.
24. Wicher D, Schäfer R, Bauernfeind R, Stensmyr MC, Heller R, Heinemann SH, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 2008; doi: 10.1038/nature06861.
25. Raming K, Krieger J, Strotmann J, Boekhoff I, Kubick S, Baumstark C, et al. Cloning and expression of odorant receptors. Nature. 1993; doi: 10.1038/361353a0.
26. Ishida Y, Leal WS. Rapid inactivation of a moth pheromone. Proc Natl Acad Sci USA. 2005; 102(39):14075-9.
27. Durand N, Carot-Sans G, Bozzolan F, Rosell G, Siaussat D, Debernard S, et al. Degradation of pheromone and plant volatile components by a same odorant-degrading enzyme in the cotton leafworm, Spodoptera littoralis. PLoS One. 2011; doi: 10.1371/journal.pone.0029147.
28. Vogt RG, Riddiford LM. Pheromone binding and inactivation by moth antennae. Nature. 1981; 293(5828): 161-3.
29. Pelosi P, Zhou JJ, Ban L, Calvello M. Soluble proteins in insect chemical communication. Cell Mol Life Sci. 2006; 63(14): 1658-76.
30. Vogt RG, Riddiford LM, Prestwich GD. Kinetic properties of a sex pheromone-degrading enzyme: The sensillar esterase of Antheraea polyphemus. Proc Natl Acad Sci USA. 1985; 82(24):8827-31.
31. Krieger J, Breer H. Olfactory reception in invertebrates. Science. 1999; 286: 720-723.
32. Swarup S, Williams TI, Anholt RR. Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav. 2011; 10(6): 648-57.
33. Hu P, Tao J, Cui MM, Gao CL, Lu PF, Luo YQ. Antennal transcriptome analysis and expression profiles of odorant binding proteins in Eogystia hippophaecolus
(Lepidoptera: Cossidae). BMC Genomics. 2016; 17: 651.
34. Scaloni A, Monti M, Angeli S, Pelosi P. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun. 1999; 266(2): 386-91.
35. Leal WS, Nikonova L, Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett. 1999; 464(1-2): 85-90.
36. Xu PX, Zwiebel LJ, Smith DP. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol. 2003; 12(6): 549-560.
37. Zhou JJ, Huang W, Zhang GA, Pickett JA, Field LM. ‘‘Plus-C’’ odorant-binding protein genes in two Drosophila species and the malaria mosquito, Anopheles gambiae. Gene. 2004; 327(1):117-29.
38. Prestwich GD, Du G. Pheromone-Binding Proteins, Pheromone Recognition, and Signal Transduction in Moth Olfaction. In: Cardé RT, Minks AK, editors. Insect Pheromone Research. Boston: Springer; 1997. p. 131-143.
39. Zhou JJ. Odorant-binding protein in insect. Vitam Horm. 2010; 83: 241-72.
40. Ban L, Zhang L, Yan Y, Pelosi P. Binding Properties of a Locust’s Chemosensory Protein. Biochem Biophys Res Commun. 2002; 293(1): 50-4.
41. Maleszka J, Forêt S, Saint R, Maleszka R. RNAi-induced phenotypes suggest a novel role for a chemosensory protein CSP5 in the development of embryonic integument in the honeybee (Apis mellifera). Dev Genes Evol. 2007; 217(3):189-96.
42. Xue WX, Fan J, Zhang Y, Xu Q, Han Z, Sun J, et al. Identification and Expression Analysis of Candidate Odorant-Binding Protein and Chemosensory Protein Genes by Antennal Transcriptome of Sitobion avenae. PLoS One. 2016; doi: 10.1371/journal.pone.0161839.
43. Ronderos DS, Smith DP. Diverse signaling mechanisms mediate volatile odorant detection in Drosophila. Fly. 2009; 3(4):290-7.
44. Nakagawa T, Sakurai T, Nishioka T, Touhara K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science. 2005; 307(5715):1638-42.
45. Grosse-Wilde E, Gohl T, Bouché E, Breer H, Krieger J. Candidate pheromone receptors provide the basis for the response of distinct antennal neurons to pheromonal compounds. Eur J Neurosci. 2007; 25(8): 2364-73.
46. Nakagawa T, Pellegrino M, Sato K, Vosshall LB, Touhara K. Amino acid residues contributing to function of the heteromeric insect olfactory receptor complex. PLoS One. 2012; doi: 10.1371/journal.pone.0032372.
47. Neuhaus EM, Gisselmann G, Zhang W, Dooley R, Störtkuhl K, Hatt H. Odorant receptor heterodimerization in the olfactory system of Drosophila melanogaster. Nat Neurosci. 2005; 8(1): 15-7.
48. Clyne PJ, Warr CG, Carlson JR. Candidate Taste Receptors in Drosophila. Science. 2000; 287(5459): 1830-34.
49. Poudel S, Kim Y, Yun TK, Lee Y. Gustatory receptors required for sensing umbelliferone in Drosophila melanogaster. Insect Biochem Mol Biol. 2015; 66: 110-8.
50. Croset V, Rytz R, Cummins SF, Budd A, Brawand D, Kaessmann H, et al. Ancient Protostome Origin of Chemosensory Ionotropic Glutamate Receptors and the Evolution of Insect Taste and Olfaction. PLoS Genet. 2010; doi: 10.1371/journal.pgen.1001064.
51. Silbering AF, Rytz R, Grosjean Y, Abuin L, Ramdya P, Jefferis GS, et al. Complementary Function and Integrated Wiring of the Evolutionarily Distinct Drosophila Olfactory Subsystems. J Neurosci. 2011; 31(38): 13357-75.
52. Abuin L, Bargeton B, Ulbrich MH, Isacoff EY, Kellenberger S, Benton R. Functional architecture of olfactory ionotropic glutamate receptors. Neuron. 2011; 69(1): 44-60.
53. Rogers ME, Krieger J, Vogt RG. Antennal SNMPs (sensory neuron membrane proteins) of Lepidoptera define a unique family of invertebrate CD36-like proteins. J Neurobiol. 2001; 49(1): 47-61.
54. Jacquin-Joly E, Merlin C. Insect olfactory receptors: contributions of molecular biology to chemical ecology. J Chem Ecol. 2004; 30(12): 2359-97.
55. Jin X, Ha TS, Smith DP. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci USA. 2008; 105(31): 10996-1001.
56. Hekmat-Scafe DS, Scafe CR, McKinney AJ, Tanouye MA. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 2002; 12(9): 1357-69.
57. Vogt RG. Biochemical diversity of odor detection: OBPs, ODEs and SNMPs. Insect Pheromone Biochemistry & Molecular Biology. In: Blomquist IG and Vogt RG, editors. London: Academic; 2003. p. 391-445.
58. Forêt S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee (Apis mellifera). Genome Res. 2006; 16(11):1404-13.
59. Xu PX, Zwiebel LJ, Smith DP. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol. 2003; 12(6): 549-560.
60. Gong DP, Zhang HJ, Zhao P, Xia QY, Xiang ZH. The Odorant Binding Protein Gene Family from the Genome of Silkworm, Bombyx mori. BMC Genomics. 2009; doi: 10.1186/1471-2164-10-332.
61. Vieira FG, Forêt S, He XL, Rozas J, Field LM, Zhou JJ. Unique Features of Odorant-Binding Proteins of the Parasitoid Wasp Nasonia vitripennis Revealed by Genome Annotation and Comparative Analyses. PLoS One. 2012; doi: 10.1371/journal.pone.0043034.
62. Nie XP, Li QL, Xu C, Li DZ, Zhang Z, Wang MQ, et al. Antennal transcriptome and odorant binding protein expression profiles of an invasive mealybug and its parasitoid. J Appl Entomol. 2017; 142: 149-61.
63. Yin XW, Iovinella I, Marangoni R, Cattonaro F, Flamini G, Sagona S, et al. Odorant-binding proteins and olfactory coding in the solitary bee Osmia cornuta. Cell Mol Life Sci. 2013; 70(16): 3029-39.
64. Wang N, Wang NX, Niu LM, Bian SN, Xiao JH, Huang DW. Odorant-binding protein (OBP) genes affect host specificity in a fig-pollinator mutualistic system. Insect Mol Biol. 2014; 23(5): 621-31.
65. Zhang S, Zhang YJ, Su HH, Gao XW, Guo YY. Identification and Expression Pattern of Putative Odorant-Binding Proteins and Chemosensory Proteins in Antennae of the Microplitis mediator (Hymenoptera: Braconidae). Chem Senses. 2009; 34(6): 503-12.
66. Vieira F G, Forêt S, He X L, Rozas J, Field LM, Zhou JJ. Unique Features of Odorant-Binding Proteins of the Parasitoid Wasp Nasonia vitripennis Revealed by Genome Annotation and Comparative Analyses. PLoS ONE. 2012; 7(8):e43034.
67. Wang JZ, Hu P, Gao P, Tao J, Luo YQ. Antennal transcriptome analysis and expression profiles of olfactory genes in Anoplophora chinensis. Sci Rep. 2017; doi: 10.1038/s41598-017-15425-2.
68. Sheng S, Liao CW, Zheng Y, Zhou Y, Xu Y, Song WM, et al. Candidate chemosensory genes identified in the endoparasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) by antennal transcriptome analysis. Comp Biochem Physiol Part D Genomics Proteomics. 2017; 22: 20-31.
69. Wang T, Zhao M, Rotgans BA, Ni G, Dean JF, Nahrung HF, et al. Proteomic analysis of the venom and venom sac of the woodwasp, Sirex noctilio - Towards understanding its biological impact. J Proteomics. 2016; 146: 195-206.
70. Kucharski R, Maleszka J, Maleszka R. A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee. Proc Biol Sci. 2016; doi: 10.1098/rspb.2016.0558.
71. Lundin C, Käll L, Kreher SA, Kapp K, Sonnhammer EL, Carlson JR, et al. Membrane topology of the Drosophila OR83b odorant receptor. FEBS Lett. 2007; 581(29): 5601-4.
72. Wanner KW, Nichols AS, Walden KK, Brockmann A, Luetje CW, Robertson HM. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc Natl Acad Sci USA. 2007; 104(36): 14383-8.
73. Ma L, Gu SH, Liu ZW, Wang SN, Guo YY, Zhou JJ, et al. Molecular characterization and expression profiles of olfactory receptor genes in the parasitic wasp, Microplitis mediator (Hymenoptera: Braconidae). J Insect Physiol. 2014; 60: 118-26.
74. Wyatt GR. The Biochemistry of Sugars and Polysaccharides in Insects. Advances in insect physiology. 1967; 4: 287-360.
75. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011; 29(7): 644-52.
76. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005; 21(18): 3674-6.