1. Nimmerjahn, A., F. Kirchhoff, and F. Helmchen, Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 2005. 308(5726): p. 1314-8.
2. Liddelow, S.A., et al., Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017. 541(7638): p. 481-487.
3. Giulian, D., et al., Interleukin 1 of the central nervous system is produced by ameboid microglia. J Exp Med, 1986. 164(2): p. 594-604.
4. Damisah, E.C., et al., Astrocytes and microglia play orchestrated roles and respect phagocytic territories during neuronal corpse removal in vivo. Sci Adv, 2020. 6(26): p. eaba3239.
5. Bennett, M.L., et al., New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A, 2016. 113(12): p. E1738-46.
6. Werneburg, S., et al., Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity, 2020. 52(1): p. 167-182 e7.
7. Pozner, A., et al., Intracellular calcium dynamics in cortical microglia responding to focal laser injury in the PC::G5-tdT reporter mouse. Front Mol Neurosci, 2015. 8: p. 12.
8. Eichhoff, G., B. Brawek, and O. Garaschuk, Microglial calcium signal acts as a rapid sensor of single neuron damage in vivo. Biochim Biophys Acta, 2011. 1813(5): p. 1014-24.
9. Umpierre, A.D., et al., Microglial calcium signaling is attuned to neuronal activity in awake mice. Elife, 2020. 9.
10. Haynes, S.E., et al., The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci, 2006. 9(12): p. 1512-9.
11. Sierra, A., et al., Microglia derived from aging mice exhibit an altered inflammatory profile. Glia, 2007. 55(4): p. 412-24.
12. Nakanishi, H. and Z. Wu, Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res, 2009. 201(1): p. 1-7.
13. Safaiyan, S., et al., Age-related myelin degradation burdens the clearance function of microglia during aging. Nat Neurosci, 2016. 19(8): p. 995-8.
14. Burns, J.C., et al., Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. Elife, 2020. 9.
15. Ponomarev, E.D., et al., Development of a culture system that supports adult microglial cell proliferation and maintenance in the resting state. J Immunol Methods, 2005. 300(1-2): p. 32-46.
16. Zhang, Y., et al., An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci, 2014. 34(36): p. 11929-47.
17. Biburger, M., I. Trenkwald, and F. Nimmerjahn, Three blocks are not enough--Blocking of the murine IgG receptor FcgammaRIV is crucial for proper characterization of cells by FACS analysis. Eur J Immunol, 2015. 45(9): p. 2694-7.
18. Anderson, A.C., et al., Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science, 2007. 318(5853): p. 1141-3.
19. Goldmann, T., et al., A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci, 2013. 16(11): p. 1618-26.
20. Madisen, L., et al., Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron, 2015. 85(5): p. 942-58.
21. Dejanovic, B., et al., Changes in the Synaptic Proteome in Tauopathy and Rescue of Tau-Induced Synapse Loss by C1q Antibodies. Neuron, 2018. 100(6): p. 1322-1336 e7.
22. Litvinchuk, A., et al., Complement C3aR Inactivation Attenuates Tau Pathology and Reverses an Immune Network Deregulated in Tauopathy Models and Alzheimer's Disease. Neuron, 2018. 100(6): p. 1337-1353 e5.
23. Wang, C., et al., Microglia mediate forgetting via complement-dependent synaptic elimination. Science, 2020. 367(6478): p. 688-694.