1. Chung, J. W., Hoke, W. E., Chumbes, E. M., Palacios, T.: AlGaN/GaN HEMT With 300-GHz fmax. IEEE Electron Device Letters 31(3), 195-197 (2010). https://doi.org/10.1109/LED.2009.2038935
2. Kumar, V., Kuliev, A., Schwindt, R., Muir, M., Simin, G., Yang, J., Asif Khan, M., Adesida, I.: High performance 0.25 μm gate-length AlGaN/GaN HEMTs on sapphire with power density of over 4.5 W/mm at 20 GHz. Solid-State Electronics 47(9), 1577-1580 (2003). https://doi.org/10.1016/S0038-1101(03)00078-9
3. Efthymiou, L., Longobardi, G., Camuso, G., Chien, T., Chen, M., Udrea, F.: On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices. Applied Physics Letters 110(12), 123502 (2017). https://doi.org/10.1063/1.4978690
4. Zhang, X., Wang, L., Li, W., Tao, L., Chen, X.: Gallium Nitride Dual Two-Dimensional Electron Gas HEMT with a Good Performance: Based on TCAD simulations. 2020 21st International Conference on Electronic Packaging Technology (ICEPT). IEEE, 1-4 (2020). https://doi.org/10.1109/ICEPT50128.2020.9202882
5. Choi, Y. C., Pophristic, M., Cha, H. Y., Peres, B., Spencer, M.G., Eastman, L. F.: The effect of an Fe-doped GaN buffer on off-state breakdown characteristics in AlGaN/GaN HEMTs on Si substrate. IEEE transactions on Electron devices 53(12), 2926-2931 (2006). https://doi.org/10.1109/TED.2006.885679
6. Zine-eddine, T., Zahra, H., Zitouni, M.: Design and analysis of 10 nm T-gate enhancement-mode MOS-HEMT for high power microwave applications. Journal of Science: Advanced Materials and Devices 4(1), 180-187 (2019). https://doi.org/10.1016/j.jsamd.2019.01.001
7. Hasan, M. R., Motayed, A., Fahad, M. S., Rao, M. V.: Fabrication and comparative study of DC and low frequency noise characterization of GaN/AlGaN based MOS-HEMT and HEMT. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics 35(5), 052202 (2017). https://doi.org/10.1116/1.4998937
8. Visalli, D., Van Hove, M., Srivastava, P., Derluyn, J., Das, J., Leys, M., Degroote, S., Cheng, K., Germain, M., Borghs, G.: Experimental and simulation study of breakdown voltage enhancement of AlGaN/GaN heterostructures by Si substrate removal. Applied Physics Letters 97(11), 113501 (2010). https://doi.org/10.1063/1.3488024
9. Clymore, C. J., Mohanty, S., Jian, Z. A., Krishna, A., Keller, S., Ahmadi, E.: HfO2 as gate insulator on N-polar GaN-AlGaN heterostructures. Semiconductor Science and Technology 36(3), 035017 (2021). https://doi.org/10.1088/1361-6641/abe21c
10. Sehra, K., Kumari, V., Gupta, M., Mishra, M., Rawal, D. S., Saxena, M.: TCAD Investigation of Gate-Lag Measurements on Conventional and π-Gate AlGaN/GaN HEMTs. 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO). IEEE, 128-133 (2020). https://doi.org/10.1109/NANO47656.2020.9183484
11. Heikman, S., Keller, S., Wu, Y., Speck, J. S., Denbaars, S. P., Mishra, U. K.: Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures. Journal of applied physics 93(12), 10114-10118 (2003). https://doi.org/10.1063/1.1577222
12. Chen, K. J., Zhou, C.: Enhancement-mode AlGaN/GaN HEMT and MIS-HEMT technology. physica status solidi (a) 208(2), 434-438 (2011). https://doi.org/10.1002/pssa.201000631
13. Amit, M., Rawal, D. S., Sharma, S., Kapoor, S., Liashram, R., Chaubey, R. K., Vinayak, S., Sharma, R. K.: Design and fabrication of multi-finger field plate for enhancement of AlGaN/GaN HEMT breakdown voltage. Defence Science Journal 68(3), 290-294 (2018). https://doi.org/10.14429/dsj.68.12134
14. Latorre Rey, A. D., Albrecht, J. D., Saraniti, M.: A П-Shaped Gate Design for Reducing Hot-Electron Generation in GaN HEMTs. IEEE Transactions on Electron Devices 65(10), 4263-4270 (2018). https://doi.org/10.1109/TED.2018.2863746
15. Colangeli, S., Giofrè, R., Ciccognani, W., Limiti, E.: A multi-finger modeling approach to correctly predict the inherent stability of a custom active device. 2017 IEEE MTT-S International Microwave Symposium (IMS). IEEE, 1784-1786 (2017). https://doi.org/10.1109/MWSYM.2017.8058994
16. Sehra, K., Kumari, V., Nath, V., Gupta, M., Saxena, M.: Optimization of Asymmetric π Gate HEMT for Improved Reliability & Frequency Applications. 2019 IEEE 9th International Nanoelectronics Conferences (INEC). IEEE, 1-4 (2019). https://doi.org/10.1109/INEC.2019.8853857
17. Su, L. Y., Lee, F., Huang, J. J.: Enhancement-mode GaN-based high-electron mobility transistors on the Si substrate with a P-type GaN cap layer. IEEE Transactions on Electron Devices 61(2), 460-465 (2014). https://doi.org/10.1109/TED.2013.2294337
18. Martinez, P. J,, Letz, S., Maset, E., Zhao, D.: Failure analysis of normally-off GaN HEMTs under avalanche conditions. Semiconductor Science and Technology 35(3), 035007 (2020). https://doi.org/10.1088/1361-6641/ab6bad
19. Yamaguchi, R., Suzuki, Y., Asubar, J. T., Tokuda, H., Kuzuhara M.: Reduced current collapse in multi-fingered AlGaN/GaN MOS-HEMTs with dual field plate. 2017 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). IEEE, 92-93 (2017). https://doi.org/10.1109/IMFEDK.2017.7998058
20. Saadaoui, S., Fathallah, O., Maaref, H.: Effects of current transportation and deep traps on leakage current and capacitance hysteresis of AlGaN/GaN HEMT. Materials Science in Semiconductor Processing 115, 105100 (2020). https://doi.org/10.1016/j.mssp.2020.105100
21. Sehra, K., Kumari, V., Gupta, M., Mishra, M. Rawal, D. S.,Saxena, M.: Optimization of π–Gate AlGaN/AlN/GaN HEMTs for Low Noise and High Gain Applications. Silicon, 1-12 (2020). https://doi.org/10.1007/s12633-020-00805-7
22. Uren, M. J., Moreke, J., Kuball, M.: Buffer design to minimize current collapse in GaN/AlGaN HFETs. IEEE Transactions on Electron Devices 59(12), 3327-3333 (2012). https://doi.org/10.1109/TED.2012.2216535
23. Hontz, M. R,, Chu, R., Khanna, R.: TCAD modeling of a lateral GaN HEMT using empirical data. 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 244-248 (2018). https://doi.org/10.1109/APEC.2018.8341017