1. Harding, E. WHO global progress report on tuberculosis elimination.ed. Lancet Respir Med. 2020 Jan;8(1):19. doi: 10.1016/S2213-2600(19)30418-7. Epub 2019 Nov 6.
2. Nahid, P., Dorman, S. E., Alipanah, N., Barry, P. M., Brozek, J. L., Cattamanchi, A., Chaisson, L. H., Chaisson, R. E., Daley, C. L., Grzemska, M., Higashi, J. M., Ho, C. S., Hopewell, P. C., Keshavjee, S. A., Lienhardt, C., Menzies, R., Merrifield, C., Narita, M., O'Brien, R., Peloquin, C. A., Raftery, A., Saukkonen, J., Schaaf, H. S., Sotgiu, G., Starke, J. R., Migliori, G. B. & Vernon, A. (2016). Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis,63(7), e147-e195.
3. Xia, Y., Zhou, Y., Carter, D. S., McNeil, M. B., Choi, W., Halladay, J., Berry, P. W., Mao, W., Hernandez, V., O'Malley, T., Korkegian, A., Sunde, B., Flint, L., Woolhiser, L. K., Scherman, M. S., Gruppo, V., Hastings, C., Robertson, G. T., Ioerger, T. R., Sacchettini, J., Tonge, P. J., Lenaerts, A. J., Parish, T. & Alley, M. (2018). Discovery of a cofactor-independent inhibitor of Mycobacterium tuberculosis InhA. Life Sci Alliance,1(3), e201800025-e201800025.
4. Robertson, G. T., Ektnitphong, V. A., Scherman, M. S., McNeil, M. B., Dennison, D., Korkegian, A., Smith, A. J., Halladay, J., Carter, D. S., Xia, Y., Zhou, Y., Choi, W., Berry, P. W., Mao, W., Hernandez, V., Alley, M. R. K., Parish, T. & Lenaerts, A. J. (2019). Efficacy and Improved Resistance Potential of a Cofactor-Independent InhA Inhibitor of Mycobacterium tuberculosis in the C3HeB/FeJ Mouse Model Antimicrob Agents Chemothery,63(4), e02071-02018.
5. Kumar, K. & Kon, O. M. (2017). Diagnosis and treatment of tuberculosis: latest developments and future priorities. Annals of Research Hospitals,1(5).
6. Ravesloot-Chávez, M. M., Dis, E. V. & Stanley, S. A. (2021). The Innate Immune Response to Mycobacterium tuberculosis Infection. Annual Review of Immunology,39(1), 611-637.
7. Cavalcanti, Y. V. N., Brelaz, M. C. A., Neves, J. K. d. A. L., Ferraz, J. C. & Pereira, V. R. A. (2012). Role of TNF-Alpha, IFN-Gamma, and IL-10 in the Development of Pulmonary Tuberculosis. Pulmonary Medicine,2012, 745483.
8. Raja, A. (2004). Immunology of tuberculosis. The Indian journal of medical research,120, 213-232.
9. Day, T. A., Mittler, J. E., Nixon, M. R., Thompson, C., Miner, M. D., Hickey, M. J., Liao, R. P., Pang, J. M., Shayakhmetov, D. M. & Sherman, D. R. (2014). Mycobacterium tuberculosis strains lacking surface lipid phthiocerol dimycocerosate are susceptible to killing by an early innate host response Infection and Immunity,82, 5214-5222.
10. du Plessis, W. J., Walzl, G. & Loxton, A. G. (2016). B cells as multi-functional players during Mycobacterium tuberculosis infection and disease. Tuberculosis,97, 118-125.
11. Maglione, P. J. & Chan, J. (2009). How B cells shape the immune response against Mycobacterium tuberculosis. Eur J Immunol,39(3), 676-686.
12. Lund, F. E. & Randall, T. D. (2010). Effector and regulatory B cells: modulators of CD4+ T cell immunity. Nat Rev Immunol,10(4), 236-247.
13. Matucci, A., Maggi, E. & Vultaggio, A. (2014). Cellular and Humoral Immune Responses During Tuberculosis Infection: Useful Knowledge in the Era of Biological Agents. The Journal of Rheumatology,91, 17.
14. Hoft, S. G., Sallin, M. A., Kauffman, K. D., Sakai, S., Ganusov, V. V. & Barber, D. L. (2019). The Rate of CD4 T Cell Entry into the Lungs during <span class="named-content genus-species" id="named-content-1">Mycobacterium tuberculosis</span> Infection Is Determined by Partial and Opposing Effects of Multiple Chemokine Receptors. Infection and Immunity,87(6), e00841-00818.
15. Khan, T. A., Mazhar, H., Saleha, S., Tipu, H. N., Muhammad, N. & Abbas, M. N. (2016). Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients. Chemotherapy research and practice,2016, 7295390-7295390.
16. Domingo-Gonzalez, R., Prince, O., Cooper, A. & Khader, S. A. (2016). Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiology spectrum,4(5), 10.1128/microbiolspec.TBTB1122-0018-2016.
17. Romero-Adrian, T. B. (2015). Role of cytokines and other factors involved in theMycobacterium tuberculosisinfection. World Journal of Immunology,5(1).
18. Chai, Q., Wang, L., Liu, C. H. & Ge, B. (2020). New insights into the evasion of host innate immunity by Mycobacterium tuberculosis. Cellular & Molecular Immunology,17(9), 901-913.
19. Olsen, A., Chen, Y., Ji, Q., Zhu, G., De Silva, A. D., Vilchèze, C., Weisbrod, T., Li, W., Xu, J., Larsen, M., Zhang, J., Porcelli, S. A., Jacobs, W. R. & Chan, J. (2016). Targeting Mycobacterium tuberculosis Tumor Necrosis Factor Alpha-Downregulating Genes for the Development of Antituberculous Vaccines mBio,7(3), e01023-01015.
20. Wei, J., Dahl, J. L., Moulder, J. W., Roberts, E. A., O'Gaora, P., Young, D. B. & Friedman, R. L. (2000). Identification of a Mycobacterium tuberculosis gene that enhances mycobacterial survival in macrophages. J Bacteriol,182(2), 377-384.
21. Green, K. D., Chen, W. & Garneau-Tsodikova, S. (2012). Identification and Characterization of Inhibitors of the Aminoglycoside Resistance Acetyltransferase Eis from Mycobacterium tuberculosis. ChemMedChem,7(1), 73-77.
22. Pan, Q., Zhao, F.-L. & Ye, B.-C. (2018). Eis, a novel family of arylalkylamine N-acetyltransferase (EC 2.3.1.87). Scientific Reports,8(1), 2435.
23. Duan, L., Yi, M., Chen, J., Li, S. & Chen, W. (2016). Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3. Biochemical and Biophysical Research Communications,473(4), 1229-1234.
24. Samuel, L. P., Song, C.-H., Wei, J., Roberts, E. A., Dahl, J. L., Barry, C. E., Jo, E.-K. & Friedman, R. L. (2007). Expression, production and release of the Eis protein by Mycobacterium tuberculosis during infection of macrophages and its effect on cytokine secretion. Microbiology (Reading),153(2), 529-540.
25. Bahrami, A. A., Payandeh, Z., Khalili, S., Zakeri, A. & Bandehpour, M. (2019). Immunoinformatics: In Silico Approaches and Computational Design of a Multi-epitope, Immunogenic Protein. International Reviews of Immunology,38(6), 307-322.
26. Khalili, S., Jahangiri, A., Borna, H., Ahmadi Zanoos, K. & Amani, J. (2014). Computational vaccinology and epitope vaccine design by immunoinformatics. Acta Microbiol Immunol Hung,61(3), 285-307.
27. Fieser, T. M., Tainer, J. A., Geysen, H. M., Houghten, R. A. & Lerner, R. A. (1987). Influence of protein flexibility and peptide conformation on reactivity of monoclonal anti-peptide antibodies with a protein alpha-helix. Proceedings of the National Academy of Sciences of the United States of America,84(23), 8568-8572.
28. Emini, E. A., Hughes, J. V., Perlow, D. S. & Boger, J. (1985). Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. Journal of virology,55(3), 836-839.
29. Karplus, P. A. & Schulz, G. E. (1985). Prediction of chain flexibility in proteins. Naturwissenschaften,72(4), 212-213.
30. Kolaskar, A. S. & Tongaonkar, P. C. (1990). A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Letters,276(1-2), 172-174.
31. Parker, J. M. R., Guo, D. & Hodges, R. S. (1986). New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and x-ray-derived accessible sites. Biochemistry,25(19), 5425-5432.
32. Ponomarenko, J., Bui, H.-H., Li, W., Fusseder, N., Bourne, P. E., Sette, A. & Peters, B. (2008). ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics,9(1), 514.
33. Larsen, J. E. P., Lund, O. & Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. Immunome Res,2, 2-2.
34. Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., Schatz, M. M., Kloetzel, P. M., Rammensee, H. G., Schild, H. & Holzhütter, H. G. (2005). Modeling the MHC class I pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class I binding. Cellular and Molecular Life Sciences CMLS,62(9), 1025-1037.
35. Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C. & Peters, B. (2013). Properties of MHC Class I Presented Peptides That Enhance Immunogenicity. PLOS Computational Biology,9(10), e1003266.
36. Dimitrov, I., Garnev, P., Flower, D. R. & Doytchinova, I. (2010). MHC Class II Binding Prediction-A Little Help from a Friend. Journal of biomedicine & biotechnology,2010, 705821-705821.
37. Vedamurthy, G. V., Ahmad, H., Onteru, S. K. & Saxena, V. K. (2019). In silico homology modelling and prediction of novel epitopic peptides from P24 protein of Haemonchus contortus. Gene,703, 102-111.
38. Doytchinova, I. A. & Flower, D. R. (2007). VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics,8(1), 4.
39. Dimitrov, I., Flower, D. R. & Doytchinova, I. (2013). AllerTOP--a server for in silico prediction of allergens. BMC bioinformatics,14 Suppl 6(Suppl 6), S4-S4.
40. Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery, C. & Raghava, G. P. S. (2013). In Silico Approach for Predicting Toxicity of Peptides and Proteins. PLoS One,8(9), e73957.
41. Rahmani, A., Baee, M., Rostamtabar, M., Karkhah, A., Alizadeh, S., Tourani, M. & Nouri, H. R. (2019). Development of a conserved chimeric vaccine based on helper T-cell and CTL epitopes for induction of strong immune response against Schistosoma mansoni using immunoinformatics approaches. International Journal of Biological Macromolecules,141, 125-136.
42. Dhanda, S. K., Vir, P. & Raghava, G. P. S. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct,8(1), 30.
43. Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L. & Souopgui, J. (2019). In-silico design of a multi-epitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports,9(1), 4409.
44. Saha, R. & Prasad, B. V. L. S. (2020). Insilico approach for designing of a multi-epitope based vaccine against novel Coronavirus (SARS-COV-2). bioRxiv, 2020.2003.2031.017459.
45. Wang, S., Li, W., Zhang, R., Liu, S. & Xu, J. (2016). CoinFold: a web server for protein contact prediction and contact-assisted protein folding. Nucleic Acids Research,44(W1), W361-W366.
46. Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. (2017). Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model. PLOS Computational Biology,13(1), e1005324.
47. Bhattacharya, D., Nowotny, J., Cao, R. & Cheng, J. (2016). 3Drefine: an interactive web server for efficient protein structure refinement. Nucleic Acids Res,44(W1), W406-409.
48. Colovos, C. & Yeates, T. O. (1993). Verification of protein structures: patterns of nonbonded atomic interactions. Protein science : a publication of the Protein Society,2(9), 1511-1519.
49. Pontius, J., Richelle, J. & Wodak, S. J. (1996). Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures. Journal of Molecular Biology,264(1), 121-136.
50. Wiederstein, M. & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res,35, 21.
51. Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D. & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic acids research,31(13), 3784-3788.
52. Mitaku, S., Hirokawa, T. & Tsuji, T. (2002). Amphiphilicity index of polar amino acids as an aid in the characterization of amino acid preference at membrane–water interfaces. Bioinformatics,18(4), 608-616.
53. Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D. & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in molecular biology (Clifton, N.J.),112, 531-552.
54. Haneef, M., Lohani, M., Dhasmana, A., Jamal, Q. M. S., Shahid, S. M. A. & Firdaus, S. (2014). Molecular Docking of Known Carcinogen 4- (Methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) with Cyclin Dependent Kinases towards Its Potential Role in Cell Cycle Perturbation. Bioinformation,10(8), 526-532.
55. Nanda Kumar, Y., Jeyakodi, G., Gunasekaran, K. & Jambulingam, P. (2016). Computational screening and characterization of putative vaccine candidates of Plasmodium vivax. Journal of biomolecular structure & dynamics,34(8), 1736-1750.
56. Shan, C., Li, H., Zhang, Y., Li, Y., Chen, Y. & He, W. (2019). Binding interactions of epididymal protease inhibitor and semenogelin-1: a homology modeling, docking and molecular dynamics simulation study. PeerJ,7, e7329-e7329.
57. Chatterjee, N., Ojha, R., Khatoon, N. & Prajapati, V. K. (2018). Scrutinizing Mycobacterium tuberculosis membrane and secretory proteins to formulate multiepitope subunit vaccine against pulmonary tuberculosis by utilizing immunoinformatic approaches. Int J Biol Macromol,118(Pt A), 180-188.
58. Puratchikody, A., Irfan, N. & Balasubramaniyan, S. (2019). Conceptual design of hybrid PCSK9 lead inhibitors against coronary artery disease. Biocatalysis and Agricultural Biotechnology,17, 427-440.
59. Abreu, R., Essler, L., Giri, P. & Quinn, F. (2020). Interferon-gamma promotes iron export in human macrophages to limit intracellular bacterial replication. PLoS One,15(12), e0240949-e0240949.
60. Ní Cheallaigh, C., Keane, J., Lavelle, E. C., Hope, J. C. & Harris, J. (2011). Autophagy in the immune response to tuberculosis: clinical perspectives. Clin Exp Immunol,164(3), 291-300.
61. Wang, S., Li, W., Liu, S. & Xu, J. (2016). RaptorX-Property: a web server for protein structure property prediction. Nucleic acids research,44(W1), W430-W435.
62. Bosshard, H. R., Marti, D. N. & Jelesarov, I. (2004). Protein stabilization by salt bridges: concepts, experimental approaches and clarification of some misunderstandings. J Mol Recognit,17(1), 1-16.
63. Fu, Y., Zhao, J. & Chen, Z. (2018). Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Protein. Comput Math Methods Med,4(3502514).
64. Kurczab, R., Śliwa, P., Rataj, K., Kafel, R. & Bojarski, A. J. (2018). Salt Bridge in Ligand–Protein Complexes—Systematic Theoretical and Statistical Investigations. Journal of Chemical Information and Modeling,58(11), 2224-2238.