1 Kosti, I., Jain, N., Aran, D., Butte, A. J. & Sirota, M. Cross-tissue Analysis of Gene and Protein Expression in Normal and Cancer Tissues. Sci Rep 6, 24799, doi:10.1038/srep24799 (2016).
2 Pontén, F. et al. A global view of protein expression in human cells, tissues, and organs. Mol Syst Biol 5, 337, doi:10.1038/msb.2009.93 (2009).
3 Fagerberg, L. et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics 13, 397-406, doi:10.1074/mcp.M113.035600 (2014).
4 Natarajan, A., Yardimci, G. G., Sheffield, N. C., Crawford, G. E. & Ohler, U. Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res 22, 1711-1722, doi:10.1101/gr.135129.111 (2012).
5 Kotliar, D. et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq. Elife 8, doi:10.7554/eLife.43803 (2019).
6 Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419, doi:10.1126/science.1260419 (2015).
7 Consortium, G. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648-660, doi:10.1126/science.1262110 (2015).
8 Lizio, M. et al. Update of the FANTOM web resource: expansion to provide additional transcriptome atlases. Nucleic Acids Res 47, D752-D758, doi:10.1093/nar/gky1099 (2019).
9 Lizio, M. et al. Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biol 16, 22, doi:10.1186/s13059-014-0560-6 (2015).
10 Prassas, I., Chrystoja, C. C., Makawita, S. & Diamandis, E. P. Bioinformatic identification of proteins with tissue-specific expression for biomarker discovery. BMC Med 10, 39, doi:10.1186/1741-7015-10-39 (2012).
11 Pontén, F., Schwenk, J. M., Asplund, A. & Edqvist, P. H. The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med 270, 428-446, doi:10.1111/j.1365-2796.2011.02427.x (2011).
12 Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol Cell Proteomics 4, 1920-1932, doi:10.1074/mcp.M500279-MCP200 (2005).
13 Mathivanan, S. et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9, 197-208, doi:10.1074/mcp.M900152-MCP200 (2010).
14 Kälin, N., Claass, A., Sommer, M., Puchelle, E. & Tümmler, B. DeltaF508 CFTR protein expression in tissues from patients with cystic fibrosis. J Clin Invest 103, 1379-1389, doi:10.1172/JCI5731 (1999).
15 Björling, E. et al. A web-based tool for in silico biomarker discovery based on tissue-specific protein profiles in normal and cancer tissues. Mol Cell Proteomics 7, 825-844, doi:10.1074/mcp.M700411-MCP200 (2008).
16 Arrell, D. K., Neverova, I. & Van Eyk, J. E. Cardiovascular proteomics: evolution and potential. Circ Res 88, 763-773, doi:10.1161/hh0801.090193 (2001).
17 Korfali, N. et al. The nuclear envelope proteome differs notably between tissues. Nucleus 3, 552-564, doi:10.4161/nucl.22257 (2012).
18 Johnson, B. M., Zhang, P., Schuetz, J. D. & Brouwer, K. L. Characterization of transport protein expression in multidrug resistance-associated protein (Mrp) 2-deficient rats. Drug Metab Dispos 34, 556-562, doi:10.1124/dmd.105.005793 (2006).
19 Rho, J. H., Roehrl, M. H. & Wang, J. Y. Tissue proteomics reveals differential and compartment-specific expression of the homologs transgelin and transgelin-2 in lung adenocarcinoma and its stroma. J Proteome Res 8, 5610-5618, doi:10.1021/pr900705r (2009).
20 Smith, M. Z., Nagy, Z. & Esiri, M. M. Cell cycle-related protein expression in vascular dementia and Alzheimer's disease. Neurosci Lett 271, 45-48, doi:10.1016/s0304-3940(99)00509-1 (1999).
21 Dittmar, K. A., Goodenbour, J. M. & Pan, T. Tissue-specific differences in human transfer RNA expression. PLoS Genet 2, e221, doi:10.1371/journal.pgen.0020221 (2006).
22 Payne, B. L. & Alvarez-Ponce, D. Codon Usage Differences among Genes Expressed in Different Tissues of Drosophila melanogaster. Genome Biol Evol 11, 1054-1065, doi:10.1093/gbe/evz051 (2019).
23 Kames, J. et al. TissueCoCoPUTs: Novel Human Tissue-Specific Codon and Codon-Pair Usage Tables Based on Differential Tissue Gene Expression. J Mol Biol 432, 3369-3378, doi:10.1016/j.jmb.2020.01.011 (2020).
24 Tuller, T. et al. An evolutionarily conserved mechanism for controlling the efficiency of protein translation. Cell 141, 344-354, doi:10.1016/j.cell.2010.03.031 (2010).
25 Shao, Z. Q., Zhang, Y. M., Feng, X. Y., Wang, B. & Chen, J. Q. Synonymous codon ordering: a subtle but prevalent strategy of bacteria to improve translational efficiency. PLoS One 7, e33547, doi:10.1371/journal.pone.0033547 (2012).
26 Liu, Q. Mutational bias and translational selection shaping the codon usage pattern of tissue-specific genes in rice. PLoS One 7, e48295, doi:10.1371/journal.pone.0048295 (2012).
27 Camiolo, S., Farina, L. & Porceddu, A. The relation of codon bias to tissue-specific gene expression in Arabidopsis thaliana. Genetics 192, 641-649, doi:10.1534/genetics.112.143677 (2012).
28 Plotkin, J. B., Robins, H. & Levine, A. J. Tissue-specific codon usage and the expression of human genes. Proc Natl Acad Sci U S A 101, 12588-12591, doi:10.1073/pnas.0404957101 (2004).
29 Sémon, M., Lobry, J. R. & Duret, L. No evidence for tissue-specific adaptation of synonymous codon usage in humans. Mol Biol Evol 23, 523-529, doi:10.1093/molbev/msj053 (2006).
30 Gingold, H. et al. A dual program for translation regulation in cellular proliferation and differentiation. Cell 158, 1281-1292, doi:10.1016/j.cell.2014.08.011 (2014).
31 Zhou, H.-Q., Ning, L.-W., Zhang, H.-X. & Guo, F.-B. Analysis of the Relationship between Genomic GC Content and Patterns of Base Usage, Codon Usage and Amino Acid Usage in Prokaryotes: Similar GC Content Adopts Similar Compositional Frequencies Regardless of the Phylogenetic Lineages. PLOS ONE 9, e107319, doi:10.1371/journal.pone.0107319 (2014).
32 Chamary, J. V., Parmley, J. L. & Hurst, L. D. Hearing silence: non-neutral evolution at synonymous sites in mammals. Nat Rev Genet 7, 98-108, doi:10.1038/nrg1770 (2006).
33 dos Reis, M., Savva, R. & Wernisch, L. Solving the riddle of codon usage preferences: a test for translational selection. Nucleic Acids Res 32, 5036-5044, doi:10.1093/nar/gkh834 (2004).
34 Hia, F. et al. Codon bias confers stability to human mRNAs. EMBO Rep 20, e48220, doi:10.15252/embr.201948220 (2019).
35 Quax, T. E., Claassens, N. J., Soll, D. & van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol Cell 59, 149-161, doi:10.1016/j.molcel.2015.05.035 (2015).
36 Zhao, F., Yu, C. H. & Liu, Y. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells. Nucleic Acids Res 45, 8484-8492, doi:10.1093/nar/gkx501 (2017).
37 Duret, L. tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16, 287-289, doi:10.1016/s0168-9525(00)02041-2 (2000).
38 Duret, L. & Mouchiroud, D. Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci U S A 96, 4482-4487, doi:10.1073/pnas.96.8.4482 (1999).
39 Chamary, J. V. & Hurst, L. D. Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals. Genome Biol 6, R75, doi:10.1186/gb-2005-6-9-r75 (2005).
40 Doherty, A. & McInerney, J. O. Translational selection frequently overcomes genetic drift in shaping synonymous codon usage patterns in vertebrates. Mol Biol Evol 30, 2263-2267, doi:10.1093/molbev/mst128 (2013).
41 Pouyet, F., Mouchiroud, D., Duret, L. & Sémon, M. Recombination, meiotic expression and human codon usage. Elife 6, e27344 (2017).
42 (!!! INVALID CITATION !!! 40,41).
43 Kirchner, S. et al. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biol 15, e2000779, doi:10.1371/journal.pbio.2000779 (2017).
44 Pavon-Eternod, M. et al. tRNA over-expression in breast cancer and functional consequences. Nucleic Acids Res 37, 7268-7280, doi:10.1093/nar/gkp787 (2009).
45 Kirchner, S. & Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat Rev Genet 16, 98-112, doi:10.1038/nrg3861 (2015).
46 Chittum, H. S. et al. Replenishment of selenium deficient rats with selenium results in redistribution of the selenocysteine tRNA population in a tissue specific manner. Biochim Biophys Acta 1359, 25-34, doi:10.1016/s0167-4889(97)00092-x (1997).
47 Sagi, D. et al. Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes. PLoS Genet 12, e1006264, doi:10.1371/journal.pgen.1006264 (2016).
48 Kondo, K., Makovec, B., Waterston, R. H. & Hodgkin, J. Genetic and molecular analysis of eight tRNA(Trp) amber suppressors in Caenorhabditis elegans. J Mol Biol 215, 7-19, doi:10.1016/s0022-2836(05)80090-7 (1990).
49 Waldman, Y. Y., Tuller, T., Shlomi, T., Sharan, R. & Ruppin, E. Translation efficiency in humans: tissue specificity, global optimization and differences between developmental stages. Nucleic Acids Res 38, 2964-2974, doi:10.1093/nar/gkq009 (2010).
50 Smith, D. W. Problems of translating heterologous genes in expression systems: the role of tRNA. Biotechnol Prog 12, 417-422, doi:10.1021/bp950056a (1996).
51 Gingold, H., Dahan, O. & Pilpel, Y. Dynamic changes in translational efficiency are deduced from codon usage of the transcriptome. Nucleic Acids Res 40, 10053-10063, doi:10.1093/nar/gks772 (2012).
52 Torrent, M., Chalancon, G., de Groot, N. S., Wuster, A. & Madan Babu, M. Cells alter their tRNA abundance to selectively regulate protein synthesis during stress conditions. Sci Signal 11, doi:10.1126/scisignal.aat6409 (2018).
53 Pang, Y. L., Abo, R., Levine, S. S. & Dedon, P. C. Diverse cell stresses induce unique patterns of tRNA up- and down-regulation: tRNA-seq for quantifying changes in tRNA copy number. Nucleic Acids Res 42, e170, doi:10.1093/nar/gku945 (2014).
54 Puri, P. et al. Systematic identification of tRNAome and its dynamics in Lactococcus lactis. Mol Microbiol 93, 944-956, doi:10.1111/mmi.12710 (2014).
55 Yona, A. H. et al. tRNA genes rapidly change in evolution to meet novel translational demands. Elife 2, e01339, doi:10.7554/eLife.01339 (2013).
56 Frenkel-Morgenstern, M. et al. Genes adopt non-optimal codon usage to generate cell cycle-dependent oscillations in protein levels. Mol Syst Biol 8, 572, doi:10.1038/msb.2012.3 (2012).
57 Goodarzi, H. et al. Modulated Expression of Specific tRNAs Drives Gene Expression and Cancer Progression. Cell 165, 1416-1427, doi:10.1016/j.cell.2016.05.046 (2016).
58 Polte, C. et al. Assessing cell-specific effects of genetic variations using tRNA microarrays. BMC Genomics 20, 549, doi:10.1186/s12864-019-5864-1 (2019).
59 Torres, A. G., Batlle, E. & Ribas de Pouplana, L. Role of tRNA modifications in human diseases. Trends Mol Med 20, 306-314, doi:10.1016/j.molmed.2014.01.008 (2014).
60 Mahlab, S., Tuller, T. & Linial, M. Conservation of the relative tRNA composition in healthy and cancerous tissues. Rna 18, 640-652, doi:10.1261/rna.030775.111 (2012).
61 Rudorf, S. Efficiency of protein synthesis inhibition depends on tRNA and codon compositions. PLoS Comput Biol 15, e1006979, doi:10.1371/journal.pcbi.1006979 (2019).
62 Rudolph, K. L. et al. Codon-Driven Translational Efficiency Is Stable across Diverse Mammalian Cell States. PLoS Genet 12, e1006024, doi:10.1371/journal.pgen.1006024 (2016).
63 Pavon-Eternod, M., Gomes, S., Rosner, M. R. & Pan, T. Overexpression of initiator methionine tRNA leads to global reprogramming of tRNA expression and increased proliferation in human epithelial cells. RNA 19, 461-466, doi:10.1261/rna.037507.112 (2013).
64 van Weringh, A. et al. HIV-1 modulates the tRNA pool to improve translation efficiency. Mol Biol Evol 28, 1827-1834, doi:10.1093/molbev/msr005 (2011).
65 Alonso, A. M. & Diambra, L. SARS-CoV-2 Codon Usage Bias Downregulates Host Expressed Genes With Similar Codon Usage. Front Cell Dev Biol 8, 831, doi:10.3389/fcell.2020.00831 (2020).
66 Chen, F. et al. Dissimilation of synonymous codon usage bias in virus-host coevolution due to translational selection. Nat Ecol Evol 4, 589-600, doi:10.1038/s41559-020-1124-7 (2020).
67 Miller, J. B., Hippen, A. A., Wright, S. M., Morris, C. & Ridge, P. G. Human viruses have codon usage biases that match highly expressed proteins in the tissues they infect. Biomedical Genetics and Genomics 2, doi:10.15761/bgg.1000134 (2017).
68 Li, Y. et al. GC usage of SARS-CoV-2 genes might adapt to the environment of human lung expressed genes. Mol Genet Genomics, doi:10.1007/s00438-020-01719-0 (2020).
69 Maldonado, L. L., Bertelli, A. M. & Kamenetzky, L. Molecular features similarities between SARS-CoV-2, SARS, MERS and key human genes could favour the viral infections and trigger collateral effects. Scientific Reports 11, 4108, doi:10.1038/s41598-021-83595-1 (2021).
70 Zhou, J., Liu, W. J., Peng, S. W., Sun, X. Y. & Frazer, I. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J Virol 73, 4972-4982, doi:10.1128/JVI.73.6.4972-4982.1999 (1999).
71 Miller, J. B., Brase, L. R. & Ridge, P. G. ExtRamp: a novel algorithm for extracting the ramp sequence based on the tRNA adaptation index or relative codon adaptiveness. Nucleic Acids Res, doi:10.1093/nar/gky1193 (2019).
72 Tuller, T. & Zur, H. Multiple roles of the coding sequence 5' end in gene expression regulation. Nucleic Acids Res 43, 13-28, doi:10.1093/nar/gku1313 (2015).
73 Verma, M. et al. A short translational ramp determines the efficiency of protein synthesis. Nature Communications 10, 5774, doi:10.1038/s41467-019-13810-1 (2019).
74 Tuller, T. et al. Composite effects of gene determinants on the translation speed and density of ribosomes. Genome Biol 12, R110, doi:10.1186/gb-2011-12-11-r110 (2011).
75 Tuller, T. et al. An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation. Cell 141, 344-354, doi:10.1016/j.cell.2010.03.031 (2010).
76 Dana, A. & Tuller, T. The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res 42, 9171-9181, doi:10.1093/nar/gku646 (2014).
77 Park, H. & Subramaniam, A. R. Inverted translational control of eukaryotic gene expression by ribosome collisions. PLoS Biol 17, e3000396, doi:10.1371/journal.pbio.3000396 (2019).
78 Villada, J. C., Duran, M. F. & Lee, P. K. Interplay between Position-Dependent Codon Usage Bias and Hydrogen Bonding at the 5ʹ End of ORFeomes. Msystems 5 (2020).
79 Hodgman, M. W., Miller, J. B., Meurs, T. E. & Kauwe, J. S. K. CUBAP: an interactive web portal for analyzing codon usage biases across populations. Nucleic Acids Research 48, 11030-11039, doi:10.1093/nar/gkaa863 (2020).
80 Quax, T. E. F., Claassens, N. J., Soll, D. & van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 59, 149-161, doi:10.1016/j.molcel.2015.05.035 (2015).
81 Goodman, D. B., Church, G. M. & Kosuri, S. Causes and effects of N-terminal codon bias in bacterial genes. Science 342, 475-479, doi:10.1126/science.1241934 (2013).
82 Gorochowski, T. E., Ignatova, Z., Bovenberg, R. A. & Roubos, J. A. Trade-offs between tRNA abundance and mRNA secondary structure support smoothing of translation elongation rate. Nucleic Acids Res 43, 3022-3032, doi:10.1093/nar/gkv199 (2015).
83 Thul, P. J. & Lindskog, C. The human protein atlas: A spatial map of the human proteome. Protein Sci. 27, 233-244, doi:10.1002/pro.3307 (2018).
84 Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419, doi:10.1126/science.1260419 (2015).
85 Ponten, F., Schwenk, J. M., Asplund, A. & Edqvist, P. H. D. The Human Protein Atlas as a proteomic resource for biomarker discovery. J. Intern. Med. 270, 428-446, doi:10.1111/j.1365-2796.2011.02427.x (2011).
86 Singh, M., Bansal, V. & Feschotte, C. A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors. Cell Rep 32, 108175, doi:10.1016/j.celrep.2020.108175 (2020).
87 Trypsteen, W., Van Cleemput, J., Snippenberg, W. V., Gerlo, S. & Vandekerckhove, L. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog 16, e1009037, doi:10.1371/journal.ppat.1009037 (2020).
88 Muus, C. et al. Single-cell meta-analysis of SARS-CoV-2 entry genes across tissues and demographics. Nat Med 27, 546-559, doi:10.1038/s41591-020-01227-z (2021).
89 Matsuyama, S. et al. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 84, 12658-12664, doi:10.1128/JVI.01542-10 (2010).
90 Glowacka, I. et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol 85, 4122-4134, doi:10.1128/JVI.02232-10 (2011).
91 Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271-280.e278, doi:10.1016/j.cell.2020.02.052 (2020).
92 Narayanan, K. et al. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol 82, 4471-4479, doi:10.1128/JVI.02472-07 (2008).
93 Kamitani, W., Huang, C., Narayanan, K., Lokugamage, K. G. & Makino, S. A two-pronged strategy to suppress host protein synthesis by SARS coronavirus Nsp1 protein. Nat Struct Mol Biol 16, 1134-1140, doi:10.1038/nsmb.1680 (2009).
94 Xia, H. et al. Evasion of Type I Interferon by SARS-CoV-2. Cell Rep 33, 108234, doi:10.1016/j.celrep.2020.108234 (2020).
95 Stukalov, A. et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, doi:10.1038/s41586-021-03493-4 (2021).
96 Khalil, M. F., Wagner, W. D. & Goldberg, I. J. Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol 24, 2211-2218, doi:10.1161/01.ATV.0000147163.54024.70 (2004).
97 Nicolai, L. et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and Coagulopathy. Circulation 142, 1176-1189, doi:10.1161/CIRCULATIONAHA.120.048488 (2020).
98 Demmer, L. A. et al. Tissue-specific expression and developmental regulation of the rat apolipoprotein B gene. Proc Natl Acad Sci U S A 83, 8102-8106, doi:10.1073/pnas.83.21.8102 (1986).
99 Duffy, Á. et al. Tissue-specific genetic features inform prediction of drug side effects in clinical trials. Sci Adv 6, doi:10.1126/sciadv.abb6242 (2020).
100 Hao, Y., Quinnies, K., Realubit, R., Karan, C. & Tatonetti, N. P. Tissue-Specific Analysis of Pharmacological Pathways. CPT Pharmacometrics Syst Pharmacol 7, 453-463, doi:10.1002/psp4.12305 (2018).
101 Nevins, J. R. et al. Towards integrated clinico-genomic models for personalized medicine: combining gene expression signatures and clinical factors in breast cancer outcomes prediction. Hum Mol Genet 12 Spec No 2, R153-157, doi:10.1093/hmg/ddg287 (2003).
102 Gordon, G. J. et al. Using gene expression ratios to predict outcome among patients with mesothelioma. J Natl Cancer Inst 95, 598-605, doi:10.1093/jnci/95.8.598 (2003).
103 Nutt, C. L. et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63, 1602-1607 (2003).
104 van de Vijver, M. J. et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347, 1999-2009, doi:10.1056/NEJMoa021967 (2002).
105 van 't Veer, L. J. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536, doi:10.1038/415530a (2002).
106 Jacquemier, J. et al. Protein expression profiling identifies subclasses of breast cancer and predicts prognosis. Cancer Res 65, 767-779 (2005).
107 Deinhardt-Emmer, S. et al. Early postmortem mapping of SARS-CoV-2 RNA in patients with COVID-19 and the correlation with tissue damage. Elife 10, doi:10.7554/eLife.60361 (2021).