1 . Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014).
2 . Fukuzumi, S., Lee, Y.-M. & Nam, W. Solar-driven production of hydrogen peroxide from water and dioxygen. Chem. Eur. J. 24, 5016-5031 (2017).
3 . Yamada, Y., Yoneda, M. & Fukuzumi, S. High and robust performance of H2O2 fuel cells in the presence of scandium ion. Energy Environ. Sci. 8, 1698-1701 (2015).
4 . Mase, K., Yoneda, M., Yamada, Y. & Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 11470 (2016).
5 . Myers, R.L. The 100 most important chemical compounds: a reference guide, First edition (Greenwood Publishing Group), pp. 352 (2007).
6 . Edwards, J. K. et al. Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037-1041 (2009).
7 . Edwards, J. K. et al. Direct Synthesis of H2O2 from H2 and O2 over Gold, Palladium, and Gold–Palladium Catalysts Supported on Acid-Pretreated TiO2. Angew. Chem. Int. Ed. 48, 8512-8515 (2009).
8 . Liu, Q., Bauer, J. C., Schaak, R. E. & Lunsford, J. H. Supported palladium nanoparticles: an efficient catalyst for the direct formation of H2O2 from H2 and O2. Angew. Chem. Int. Ed. 47, 6221-6224 (2008).
9 . Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226-231 (2019).
10 . Smith, W. A., Sharp, I. D., Strandwitz, N. C. & Bisquert, J. Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 2851-2862 (2015).
11 . Hou, H., Zeng, X. & Zhang, X. Production of hydrogen peroxide through photocatalytic processes: a critical review of recent advances. Angew. Chem. Int. Ed. doi:10.1002/anie.201911609 (2019).
12 . Krivtsov, I. et al. Water-Soluble Polymeric Carbon Nitride Colloidal Nanoparticles for Highly Selective Quasi-Homogeneous Photocatalysis. Angew. Chem. Int. Ed. 59, 487-495 (2020).
13 . Jeon, T. H., Kim, H., Kim, H.-i. & Choi, W. Highly durable photoelectrochemical H2O2 production via dual photoanode and cathode processes under solar simulating and external bias-free conditions. Energy Environ. Sci. 13, 1730-1742 (2020).
14 . Fan, W. et al. Efficient hydrogen peroxide synthesis by metal-free polyterthiophene via photoelectrocatalytic dioxygen reduction. Energy Environ. Sci. 13, 238-245 (2020).
15 . Moon, G.-h. et al. Eco-Friendly Photochemical production of H2O2 through O2 reduction over carbon nitride frameworks incorporated with multiple heteroelements. ACS Catal. 7, 2886-2895 (2017).
16 . Zhang, P. et al. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 10, 940 (2019).
17 . Wei, Z. et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 11, 2581-2589 (2018).
18 . Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76-80 (2009).
19 . Cao, S., Low, J., Yu, J. & Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150-2176 (2015).
20 . Zhang, G., Lan, Z.-A. & Wang, X. Conjugated polymers: catalysts for photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 55, 15712-15727 (2016).
21 . Ghosh, I. et al. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 365, 360-366 (2019).
22 . Zhao, Y. & Antonietti, M. Visible‐light‐irradiated graphitic carbon nitride photocatalyzed Diels–Alder reactions with dioxygen as sustainable mediator for photoinduced electrons. Angew. Chem. Int. Ed. 56, 9336-9340 (2017).
23 . Zhao, Y. et al. The Surface-structure sensitivity of dioxygen activation in the anatase-photocatalyzed oxidation reaction. Angew. Chem. Int. Ed. 51, 3188-3192 (2012).
24 . Li, L. et al. Photocatalytic cyanation of carbon nitride scaffolds: tuning band structure and enhancing the performance in green light driven C-S bond formation. Appl. Catal. B-Environ. 229, 249-253 (2018).
25 . Zhang, G. et al. Electron Deficient Monomers that Optimize Nucleation and Enhance the Photocatalytic Redox Activity of Carbon Nitrides. Angew. Chem. Int. Ed. 58, 14950-14954 (2019).
26 . Lau, V. W.-h. et al. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 7, 12165 (2016).
27 . au, V. W.-h. et al. Urea-modified carbon nitrides: enhancing photocatalytic hydrogen evolution by rational defect engineering. Adv. Energy Mater. 7, 1602251 (2017).
28 . Fujishima, A., Zhang, X. & Tryk, D. A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515-582 (2008).
29 . Godin, R., Wang, Y., Zwijnenburg, M. A., Tang, J. & Durrant, J. R. Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 139, 5216-5224 (2017).
30 . Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T. & Chai, S.-P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159-7329 (2016).
31 Dontsova, D. et al. Triazoles: A new class of precursors for the synthesis of negatively charged carbon nitride derivatives. Chem. Mater. 27, 5170-5179 (2015).
32 . Kasap, H. et al. Solar-driven reduction of aqueous protons coupled to selective alcohol oxidation with a carbon nitride–molecular ni catalyst system. J. Am. Chem. Soc. 138, 9183-9192 (2016).
33 . Shalom, M., Inal, S., Fettkenhauer, C., Neher, D. & Antonietti, M. Improving carbon nitride photocatalysis by supramolecular preorganization of monomers. J. Am. Chem. Soc. 135, 7118-7121 (2013).
34 . Lin, L., Yu, Z. & Wang, X. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem. Int. Ed. 58, 6164-6175 (2019).
35 . Zhang, G. et al. Tailoring the grain boundary chemistry of polymeric carbon nitride for enhanced solar hydrogen production and CO2 reduction. Angew. Chem. Int. Ed. 58, 3433-3437 (2019).
36 . Bojdys, M. J., Müller, J.-O., Antonietti, M. & Thomas, A. Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chem. Eur. J. 14, 8177-8182 (2008).
37 . Liu, X., Fechler, N. & Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 42, 8237-8265 (2013).
38 . Shiraishi, Y. et al. Resorcinol–formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 18, 985-993 (2019).
39 . Shiraishi, Y. et al. Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts. Angew. Chem. Int. Ed. 53, 13454-13459 (2014).
40 . Shiraishi, Y. et al. Effects of Surface Defects on Photocatalytic H2O2 Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation. ACS Catal. 5, 3058-3066 (2015).
41 . Teng, Z. et al. Edge-functionalized g-C3N4 nanosheets as a highly efficient metal-free photocatalyst for safe drinking water. Chem 5, 664-680 (2019).
42 . Govindjee W. J. Concepts in photobiology: photosynthesis and photomorphogenesis (Kluwer Academic Publishers), pp. 11-51 (1999).
43 . Meher, L. C., Vidya Sagar, D. & Naik, S. N. Technical aspects of biodiesel production by transesterification-a review. Renewable Sustainable Energy Rev. 10, 248-268 (2006).
44 . Zhou, C.-H., Beltramini, J. N., Fan, Y.-X. & Lu, G. Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 37, 527-549 (2008).
45 . Verma, S., Lu, S. & Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 4, 466-474 (2019).
46 . Wang, X. et al. Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible Light. J. Am. Chem. Soc. 131, 1680-1681 (2009).
47 . Pieber, B., Shalom, M., Antonietti, M., Seeberger, P. H. & Gilmore, K. Continuous heterogeneous photocatalysis in serial micro-batch reactors. Angew. Chem. Int. Ed. 57, 9976-9979 (2018).
48 . Zhao, Y. & Antonietti, M. Visible‐light‐driven conversion of alcohols into iodide derivatives with iodoform. ChemPhotoChem 2, 720-724 (2018).
49 . Geyer, K., Codée, J. D. C. & Seeberger, P. H. Microreactors as tools for synthetic chemists—the chemists' round-bottomed flask of the 21st century? Chem. Eur. J. 12, 8434-8442 (2006).
50 . Laudadio, G. et al. C(sp3)-H functionalizations of light hydrocarbons using decatungstate photocatalysis in flow. Science 369, 92-96 (2020).
51 . Deifallah, M., McMillan, P. F. & Corà, F. Electronic and structural properties of two-dimensional carbon nitride graphenes. J. Phys. Chem. C 112, 5447-5453 (2008).
52 . Jorge, A. B. et al. H2 and O2 evolution from water half-splitting reactions by graphitic carbon nitride materials. J. Phys. Chem. C 117, 7178-7185 (2013).
53 . Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893-4908 (2008).
54 . Zhang, H. & Yu, A. Photophysics and photocatalysis of carbon nitride synthesized at different temperatures. J. Phys. Chem. C 118, 11628-11635 (2014).
55 . Khan, M. A., Maity, P., Al-Oufi, M., Al-Howaish, I. K. & Idriss, H. Electron transfer of the metal/semiconductor system in photocatalysis. J. Phys. Chem. C 122, 16779-16787 (2018).
56 . Tyborski, T. et al. Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications. J. Phys.: Condens. Matter 25, 395402 (2013).
57 . Yu, H. et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 29, 1605148 (2017).
58 . Corp, K. L. & Schlenker, C. W. Ultrafast spectroscopy reveals electron-transfer cascade that improves hydrogen evolution with carbon nitride photocatalysts. J. Am. Chem. Soc. 139, 7904-7912 (2017).
59 . Merschjann, C. et al. Photophysics of polymeric carbon nitride: An optical quasimonomer. Phys. Rev. B 87, 205204 (2013).
60 Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271, 933-937 (1996).
61 Niu, P., Zhang, L., Liu, G. & Cheng, H.-M. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22, 4763-4770 (2012).
62 Zhang, X. et al. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18-21 (2013).
63 Ou, H., Yang, P., Lin, L., Anpo, M. & Wang, X. Carbon nitride aerogels for the photoredox conversion of water. Angew. Chem. Int. Ed. 56, 10905-10910 (2017).
64 . Kumar, P. et al. C3N5: a low bandgap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications. J. Am. Chem. Soc. 141, 5415-5436 (2019).
65 . Liang, Q., Li, Z., Huang, Z.-H., Kang, F. & Yang, Q.-H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 25, 6885-6892 (2015).
66 . Yang, W. et al. Electron accumulation induces efficiency bottleneck for hydrogen production in carbon nitride photocatalysts. J. Am. Chem. Soc. 141, 11219-11229 (2019).
67 . Kronik, L. & Shapira, Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 37, 1-206 (1999).
68 . Jiang, T. et al. Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Phys. Chem. Chem. Phys. 12, 15476-15481 (2010).
69 . Jiang, T., Xie, T., Chen, L., Fu, Z. & Wang, D. Carrier concentration-dependent electron transfer in Cu2O/ZnO nanorod arrays and their photocatalytic performance. Nanoscale 5, 2938-2944 (2013).
70 . Gross, D. et al. Charge Separation in Type II Tunneling Multilayered Structures of CdTe and CdSe Nanocrystals Directly Proven by Surface Photovoltage Spectroscopy. J. Am. Chem. Soc. 132, 5981-5983 (2010).
71 . Wei, X. et al. Effect of heterojunction on the behavior of photogenerated charges in [email protected] nanoparticle photocatalysts. J. Phys. Chem. C 115, 8637-8642 (2011).
72 . Townsend, T. K., Browning, N. D. & Osterloh, F. E. Overall photocatalytic water splitting with NiOx-SrTiO3 - a revised mechanism. Energy Environ. Sci. 5, 9543-9550 (2012).
73 . Yeh, T.-F., Teng, C.-Y., Chen, S.-J. & Teng, H. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination. Adv. Mater. 26, 3297-3303 (2014).
74 . Liu, G. et al. In situ bond modulation of graphitic carbon nitride to construct p–n homojunctions for enhanced photocatalytic hydrogen production. Adv. Funct. Mater. 26, 6822-6829 (2016).