1. D’Amico, C., Fontana, F., Cheng, R. & Santos, H. A. Development of vaccine formulations: past, present, and future. Drug Delivery and Translational Research11, 353-372 (2021).
2. Shen, Y., Hao, T., Ou, S., Hu, C. & Chen, L. Applications and perspectives of nanomaterials in novel vaccine development. MedChemComm9, 226-238 (2018).
3. Hobernik, D. & Bros, M. DNA vaccines—how far from clinical use? International journal of molecular sciences19, 3605 (2018).
4. Gilboa, E. & Vieweg, J. Cancer immunotherapy with mRNA‐transfected dendritic cells. Immunological reviews199, 251-263 (2004).
5. Schlake, T., Thess, A., Thran, M. & Jordan, I. mRNA as novel technology for passive immunotherapy. Cellular and Molecular Life Sciences76, 301-328 (2019).
6. Verbeke, R., Lentacker, I., De Smedt, S. C. & Dewitte, H. Three decades of messenger RNA vaccine development. Nano Today28, 100766 (2019).
7. Fuller, D. H. & Berglund, P. Amplifying RNA vaccine development. New England Journal of Medicine382, 2469-2471 (2020).
8. Ferrero, D., Ferrer-Orta, C. & Verdaguer, N. Viral RNA-dependent RNA polymerases: a structural overview. Virus Protein and Nucleoprotein Complexes, 39-71 (2018).
9. Vogel, A. B. et al. Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Molecular Therapy26, 446-455 (2018).
10. Jackson, N. A., Kester, K. E., Casimiro, D., Gurunathan, S. & DeRosa, F. The promise of mRNA vaccines: a biotech and industrial perspective. npj Vaccines5, 1-6 (2020).
11. Hekele, A. et al. Rapidly produced SAM® vaccine against H7N9 influenza is immunogenic in mice. Emerging microbes & infections2, 1-7 (2013).
12. Blakney, A. K. et al. Big is Beautiful: Enhanced saRNA delivery and immunogenicity by a higher molecular weight, bioreducible, cationic polymer. ACS nano14, 5711-5727 (2020).
13. Goswami, R. et al. Mannosylation of LNP results in improved potency for self-amplifying RNA (SAM) vaccines. ACS infectious diseases5, 1546-1558 (2019).
14. Perche, F. et al. Neutral lipopolyplexes for in vivo delivery of conventional and replicative RNA vaccine. Molecular Therapy-Nucleic Acids17, 767-775 (2019).
15. Lundstrom, K. The Potential of Self-amplifying RNA Vaccines for Infectious Diseases and COVID-19. Vaccine Research7, 25-37 (2020).
16. Blakney, A. K., Ip, S. & Geall, A. J. An update on self-amplifying mRNA vaccine development. Vaccines9, 97 (2021).
17. Luisi, K. et al. Development of a potent Zika virus vaccine using self-amplifying messenger RNA. Science advances6, eaba5068 (2020).
18. McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nature communications11, 1-7 (2020).
19. Spencer, A. J. et al. Heterologous vaccination regimens with self-amplifying RNA and adenoviral COVID vaccines induce robust immune responses in mice. Nature communications12, 1-8 (2021).
20. Li, Y. et al. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Central Science7, 512-533 (2021).
21. Na, W., Moon, H. & Song, D. A comprehensive review of SARS-CoV-2 genetic mutations and lessons from animal coronavirus recombination in one health perspective. Journal of Microbiology59, 332-340 (2021).
22. Noh, J. Y., Jeong, H. W. & Shin, E.-C. SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern. Signal Transduction and Targeted Therapy6, 1-2 (2021).
23. Kim, J., Eygeris, Y., Gupta, M. & Sahay, G. Self-assembled mRNA vaccines. Advanced drug delivery reviews (2021).
24. Blakney, A. K., McKay, P. F., Yus, B. I., Aldon, Y. & Shattock, R. J. Inside out: optimization of lipid nanoparticle formulations for exterior complexation and in vivo delivery of saRNA. Gene therapy26, 363-372 (2019).
25. Weidinger, C., Hegazy, A. N., Glauben, R. & Siegmund, B. COVID-19—from mucosal immunology to IBD patients. Mucosal Immunology, 1-8 (2021).
26. Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature583, 834-838 (2020).
27. Leung, W. K. et al. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology125, 1011-1017 (2003).
28. Livanos, A. E. et al. Gastrointestinal involvement attenuates COVID-19 severity and mortality. MedRxiv (2020).
29. Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature591, 639-644 (2021).
30. Wang, Z. et al. neutralization by dimeric IgA. Sci. Transl. Med13.