1 Oku, T., Arita, Y., Tsuneki, H. & Ikariya, T. Continuous chemoselective methylation of functionalized amines and diols with supercritical methanol over solid acid and acid-base bifunctional catalysts. J. Am. Chem. Soc. 126, 7368-7377 (2004).
2 Bobbink, F. D., Das, S. & Dyson, P. J. N-formylation and N-methylation of amines using metal-free N-heterocyclic carbene catalysts and CO2 as carbon source. Nat. Protoc. 12, 417-428 (2017).
3 Jagadeesh, R. V. et al. MOF-derived cobalt nanoparticles catalyze a general synthesis of amines. Science 358, 326-331 (2017).
4 Afanasyev, O. I., Kuchuk, E., Usanov, D. L. & Chusov, D. Reductive Amination in the Synthesis of Pharmaceuticals. Chem. Rev. 119, 11857-11911 (2019).
5 Beydoun, K., vom Stein, T., Klankermayer, J. & Leitner, W. Ruthenium-Catalyzed Direct Methylation of Primary and Secondary Aromatic Amines Using Carbon Dioxide and Molecular Hydrogen. Angew. Chem. Int. Ed. 52, 9554-9557 (2013).
6 Njarðarson, J. Top 200 Brand Name Drugs by Retail Sales in 2020, <https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/files/Top%20200%20Pharmaceuticals%20By%20Retail%20Sales%202020V3.pdf> (2021).
7 Fatemeh, N. H., Farasat, Z., Nabavizadeh, S. M., Wu, G. & Abu-Omar, M. M. N-methylation versus oxidative addition using MeI in the reaction of organoplatinum(II) complexes containing pyrazine ligand. J. Organomet. Chem. 880, 232-240 (2019).
8 Men, N. Y. T., Li, W. F., Stewart, S. G. & Wu, X. F. Transition Metal-free Methylation of Amines with Formaldehyde as the Reductant and Methyl Source. Chimia 69, 345-347 (2015).
9 Wang, H. L., Huang, Y. J., Dai, X. C. & Shi, F. N-Monomethylation of amines using paraformaldehyde and H-2. Chem. Commun. 53, 5542-5545 (2017).
10 Dang, T. T., Ramalingam, B. & Seayad, A. M. Efficient Ruthenium-Catalyzed N-Methylation of Amines Using Methanol. ACS Catal. 5, 4082-4088 (2015).
11 Jiang, X. et al. A General Method for N-Methylation of Amines and Nitro Compounds with Dimethylsulfoxide. Chem. Eur. J. 20, 58-63 (2014).
12 Tundo, P. & Selva, M. The chemistry of dimethyl carbonate. Accounts. Chem. Res. 35, 706-716 (2002).
13 Tlili, A., Frogneux, X., Blondiaux, E. & Cantat, T. Creating Added Value with a Waste: Methylation of Amines with CO2 and H-2. Angew. Chem. Int. Ed. 53, 2543-2545 (2014).
14 Li, Y. H., Sorribes, I., Yan, T., Junge, K. & Beller, M. Selective Methylation of Amines with Carbon Dioxide and H-2. Angew. Chem. Int. Ed. 52, 12156-12160 (2013).
15 Beydoun, K., Ghattas, G., Thenert, K., Klankermayer, J. & Leitner, W. Ruthenium-Catalyzed Reductive Methylation of Imines Using Carbon Dioxide and Molecular Hydrogen. Angew. Chem. Int. Ed. 53, 11010-11014 (2014).
16 van der Waals, D. et al. Ruthenium-Catalyzed Methylation of Amines with Paraformaldehyde in Water under Mild Conditions. Chemsuschem 9, 2343-2347 (2016).
17 Huang, S. et al. N-Methylation of ortho-substituted aromatic amines with methanol catalyzed by 2-arylbenzo[d]oxazole NHC-Ir(iii) complexes. Dalton Trans. 48, 5072-5082 (2019).
18 Gonzalez-Lainez, M., Jimenez, M. V., Passarelli, V. & Perez-Torrente, J. J. Effective N-methylation of nitroarenes with methanol catalyzed by a functionalized NHC-based iridium catalyst: a green approach to N-methyl amines. Catal. Sci. Technol. 10, 3458-3467 (2020).
19 Lam, R. H. et al. Selective formylation or methylation of amines using carbon dioxide catalysed by a rhodium perimidine-based NHC complex. Green Chem. 21, 538-549 (2019).
20 Qiao, C., Liu, X. F., Liu, X. & He, L. N. Copper(II)-Catalyzed Selective Reductive Methylation of Amines with Formic Acid: An Option for Indirect Utilization of CO2. Org. Lett. 19, 1490-1493 (2017).
21 Zheng, J. X., Darcel, C. & Sortais, J. B. Methylation of secondary amines with dialkyl carbonates and hydrosilanes catalysed by iron complexes. Chem. Commun. 50, 14229-14232 (2014).
22 Li, W. D., Zhu, D. Y., Li, G., Chen, J. & Xia, J. B. Iron-Catalyzed Selective N-Methylation and N-Formylation of Amines with CO2. Adv. Synth. Catal. 361, 5098-5104 (2019).
23 Liu, Z. H. et al. Efficient Cobalt-Catalyzed Methylation of Amines Using Methanol. Adv. Synth. Catal. 359, 4278-4283 (2017).
24 Huang, Z. J. et al. Mn-Catalyzed Selective Double and Mono-N-Formylation and N-Methylation of Amines by using CO2. Chemsuschem 12, 3054-3059 (2019).
25 Mizuno, N. & Misono, M. Heterogenous catalysis. Chem. Rev. 98, 199-217 (1998).
26 Astruc, D., Lu, F. & Aranzaes, J. R. Nanoparticles as recyclable catalysts: The frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 44, 7852-7872 (2005).
27 Yang, X. F. et al. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts. Chem. Res. 46, 1740-1748 (2013).
28 Dai, Y. H. et al. Recent progress in heterogeneous metal and metal oxide catalysts for direct dehydrogenation of ethane and propane. Chem. Soc. Rev. 50, 5590-5630 (2021).
29 Cui, X. J., Zhang, Y., Deng, Y. Q. & Shi, F. N-Methylation of amine and nitro compounds with CO2/H-2 catalyzed by Pd/CuZrOx under mild reaction conditions. Chem. Commun. 50, 13521-13524 (2014).
30 Zhang, L. N., Zhang, Y., Deng, Y. Q. & Shi, F. Light-promoted N,N-dimethylation of amine and nitro compound with methanol catalyzed by Pd/TiO2 at room temperature. RSC Adv. 5, 14514-14521 (2015).
31 Kon, K., Siddiki, S. M. A. H., Onodera, W. & Shimizu, K. Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen. Chem.-Eur. J. 20, 6264-6267 (2014).
32 Wang, L. M. et al. Photocatalytic N-Methylation of Amines over Pd/TiO2 for the Functionalization of Heterocycles and Pharmaceutical Intermediates. ACS Sustain. Chem. Eng. 6, 15419-15424 (2018).
33 Lin, W. W. et al. Selective N-Methylation of N-Methylaniline with CO2 and H-2 over TiO2-Supported PdZn Catalyst. ACS Catal. 10, 3285-3296 (2020).
34 Zecevic, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245-253 (2015).
35 Sankar, M. et al. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 41, 8099-8139 (2012).
36 Munnik, P., de Jongh, P. E. & de Jong, K. P. Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 115, 6687-6718 (2015).
37 Galvis, H. M. T. et al. Supported Iron Nanoparticles as Catalysts for Sustainable Production of Lower Olefins. Science 335, 835-838 (2012).
38 Corma, A. & Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 313, 332-334 (2006).
39 Lefevre, M., Proietti, E., Jaouen, F. & Dodelet, J. P. Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 324, 71-74 (2009).
40 Haslam, G. E., Chin, X. Y. & Burstein, G. T. Passivity and electrocatalysis of nanostructured nickel encapsulated in carbon. Phys. Chem. Chem. Phys. 13, 12968-12974 (2011).
41 Deng, D. H. et al. Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 52, 371-375 (2013).
42 Huang, J. H., Durden, H. & Chowdhury, M. Bio-inspired armor protective material systems for ballistic shock mitigation. Mater. Design. 32, 3702-3710 (2011).
43 Kolmer, M. et al. Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces. Science 369, 571-575 (2020).
44 Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183-191 (2007).
45 Geim, A. K. Graphene: Status and Prospects. Science 324, 1530-1534 (2009).
46 Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109-162 (2009).
47 Wong, D. L. et al. Cascade of electronic transitions in magic-angle twisted bilayer graphene. Nature 582, 198-202 (2020).
48 Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer-bilayer graphene. Nature 583, 215-220 (2020).
49 Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249-255(2021).
50 Stauber, T., Peres, N. M. R. & Guinea, F. Electronic transport in graphene: A semiclassical approach including midgap states. Phys. Rev. B 76 (2007).
51 Guinea, F. Charge distribution and screening in layered graphene systems. Phys. Rev. B 75 (2007).
52 Deng, J., Ren, P. J., Deng, D. H. & Bao, X. H. Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction. Angew. Chem. Int. Ed. 54, 2100-2104 (2015).
53 Liu, J. G. et al. Facile synthesis of controllable graphene-co-shelled reusable Ni/NiO nanoparticles and their application in the synthesis of amines under mild conditions. Green Chem. 22, 7387-7397 (2020).
54 Du, X. L. et al. Direct Methylation of Amines with Carbon Dioxide and Molecular Hydrogen using Supported Gold Catalysts. Chemsuschem 8, 3489-3496 (2015).
55 Cui, X. J., Dai, X. C., Zhang, Y., Deng, Y. Q. & Shi, F. Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen. Chem. Sci. 5, 649-655 (2014).
56 Cabrero-Antonino, J. R., Alberico, E., Junge, K., Junge, H. & Beller, M. Towards a general ruthenium-catalyzed hydrogenation of secondary and tertiary amides to amines. Chem. Sci. 7, 3432-3442 (2016).
57 Volla, C. M., Atodiresei, I. & Rueping, M. Catalytic C-C bond-forming multi-component cascade or domino reactions: pushing the boundaries of complexity in asymmetric organocatalysis. Chem. Rev. 114, 2390-2431 (2014).
58 Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134-7186 (2006).
59 Nicolaou, K. C. & Chen, J. S. The art of total synthesis through cascade reactions. Chem. Soc. Rev. 38, 2993-3009 (2009).
60 Tsubogo, T., Oyamada, H. & Kobayashi, S. Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts. Nature 520, 329-332 (2015).
61 Britton, J. & Jamison, T. F. The assembly and use of continuous flow systems for chemical synthesis. Nat. Protoc. 12, 2423-2446 (2017).
62 Robertson, J. C., Coote, M. L. & Bissember, A. C. Synthetic applications of light, electricity, mechanical force and flow. Nat. Rev. Chem. 3, 290-304 (2019).
63 Seo, H., Nguyen, L. V. & Jamison, T. F. Using Carbon Dioxide as a Building Block in Continuous Flow Synthesis. Adv. Synth. Catal. 361, 247-264 (2019).