1. Di Nisio, M., N. van Es, and H.R. Buller, Deep vein thrombosis and pulmonary embolism. Lancet, 2016. 388(10063): p. 3060-3073.
2. Thachil, J., Deep vein thrombosis. Hematology, 2014. 19(5): p. 309-10.
3. Bernardi, E. and G. Camporese, Diagnosis of deep-vein thrombosis. Thromb Res, 2018. 163: p. 201-206.
4. Goldhaber, S.Z. and H. Bounameaux, Pulmonary embolism and deep vein thrombosis. Lancet, 2012. 379(9828): p. 1835-46.
5. Maufus, M., et al., Diagnosis of deep vein thrombosis recurrence: Ultrasound criteria. Thromb Res, 2018. 161: p. 78-83.
6. Ding, D.C., et al., Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant, 2015. 24(3): p. 339-47.
7. Li, T., et al., Human umbilical cord mesenchymal stem cells: an overview of their potential in cell-based therapy. Expert Opin Biol Ther, 2015. 15(9): p. 1293-306.
8. Yaghoubi, Y., et al., Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci, 2019. 233: p. 116733.
9. Yang, W., et al., Mesenchymal stem-cell-derived exosomal miR-145 inhibits atherosclerosis by targeting JAM-A. Mol Ther Nucleic Acids, 2021. 23: p. 119-131.
10. Mao, H.Y., L.N. Liu, and Y.M. Hu, Mesenchymal stem cells-derived exosomal miRNA-28-3p promotes apoptosis of pulmonary endothelial cells in pulmonary embolism. Eur Rev Med Pharmacol Sci, 2020. 24(20): p. 10619-10631.
11. Wang, L., et al., Blockade of NEAT1 represses inflammation response and lipid uptake via modulating miR-342-3p in human macrophages THP-1 cells. J Cell Physiol, 2019. 234(4): p. 5319-5326.
12. Cheng, S., et al., T2DM inhibition of endothelial miR-342-3p facilitates angiogenic dysfunction via repression of FGF11 signaling. Biochem Biophys Res Commun, 2018. 503(1): p. 71-78.
13. Mercier, O., et al., Endothelin A receptor blockade improves regression of flow-induced pulmonary vasculopathy in piglets. J Thorac Cardiovasc Surg, 2010. 140(3): p. 677-83.
14. Zhou, W., et al., MicroRNA19293p participates in murine cytomegalovirusinduced hypertensive vascular remodeling through Ednra/NLRP3 inflammasome activation. Int J Mol Med, 2021. 47(2): p. 719-731.
15. Patel, C., et al., Activation of the endothelin system mediates pathological angiogenesis during ischemic retinopathy. Am J Pathol, 2014. 184(11): p. 3040-51.
16. Wu, P., et al., HucMSC exosome-delivered 14-3-3zeta alleviates ultraviolet radiation-induced photodamage via SIRT1 pathway modulation. Aging (Albany NY), 2021. 13(8): p. 11542-11563.
17. Dong, B., et al., Exosomes from human umbilical cord mesenchymal stem cells attenuate the inflammation of severe steroid-resistant asthma by reshaping macrophage polarization. Stem Cell Res Ther, 2021. 12(1): p. 204.
18. Du, X., et al., miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med, 2019. 17(1): p. 270.
19. Cao, J.Y., et al., Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury. Theranostics, 2021. 11(11): p. 5248-5266.
20. Ai, P., et al., MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1alpha. J Thromb Thrombolysis, 2018. 45(2): p. 264-273.
21. Sun, J., et al., Endothelial progenitor cell-derived exosomes, loaded with miR-126, promoted deep vein thrombosis resolution and recanalization. Stem Cell Res Ther, 2018. 9(1): p. 223.
22. Teng, X., et al., Mesenchymal Stem Cell-Derived Exosomes Improve the Microenvironment of Infarcted Myocardium Contributing to Angiogenesis and Anti-Inflammation. Cell Physiol Biochem, 2015. 37(6): p. 2415-24.
23. Song, B.W., et al., 1H-pyrrole-2,5-dione-based small molecule-induced generation of mesenchymal stem cell-derived functional endothelial cells that facilitate rapid endothelialization after vascular injury. Stem Cell Res Ther, 2015. 6: p. 174.
24. Ou, M., et al., Upregulated MiR-9-5p Protects Against Inflammatory Response in Rats with Deep Vein Thrombosis via Inhibition of NF-kappaB p50. Inflammation, 2019. 42(6): p. 1925-1938.
25. Tang, K.C., et al., Effect of miR-495 on lower extremity deep vein thrombosis through the TLR4 signaling pathway by regulation of IL1R1. Biosci Rep, 2018. 38(6).
26. Sun, S., et al., Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12. IUBMB Life, 2020. 72(3): p. 492-504.
27. Du, X., et al., miR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution. Stem Cell Res Ther, 2020. 11(1): p. 354.
28. Zhang, Y., et al., IL (Interleukin)-6 Contributes to Deep Vein Thrombosis and Is Negatively Regulated by miR-338-5p. Arterioscler Thromb Vasc Biol, 2020. 40(2): p. 323-334.
29. Zhang, Y., et al., Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J Neurosurg, 2015. 122(4): p. 856-67.
30. Zhang, Y., et al., Exosomes from human umbilical cord mesenchymal stem cells enhance fracture healing through HIF-1alpha-mediated promotion of angiogenesis in a rat model of stabilized fracture. Cell Prolif, 2019. 52(2): p. e12570.
31. Huang, J.H., et al., Exosomes Derived from miR-126-modified MSCs Promote Angiogenesis and Neurogenesis and Attenuate Apoptosis after Spinal Cord Injury in Rats. Neuroscience, 2020. 424: p. 133-145.
32. Kong, L.Y., et al., Mesenchymal Stem Cell-derived Exosomes Rescue Oxygen-Glucose Deprivation-induced Injury in Endothelial Cells. Curr Neurovasc Res, 2020. 17(2): p. 155-163.
33. Liu, J., et al., Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Accelerate Cutaneous Wound Healing by Enhancing Angiogenesis through Delivering Angiopoietin-2. Stem Cell Rev Rep, 2021. 17(2): p. 305-317.
34. Jung, Y.Y., et al., Atherosclerosis is exacerbated by chitinase-3-like-1 in amyloid precursor protein transgenic mice. Theranostics, 2018. 8(3): p. 749-766.
35. Ray, S.L., et al., The Role of miR-342 in Vascular Health. Study in Subclinical Cardiovascular Disease in Mononuclear Cells, Plasma, Inflammatory Cytokines and PANX2. Int J Mol Sci, 2020. 21(19).
36. Sek, A.C., et al., Endothelial Expression of Endothelin Receptor A in the Systemic Capillary Leak Syndrome. PLoS One, 2015. 10(7): p. e0133266.
37. Zhang, W., et al., Enhanced Endothelin A and B Receptor Expression and Receptor-Mediated Vasoconstriction in Rat Mesenteric arteries after Lipopolysaccharide Challenge. Mediators Inflamm, 2019. 2019: p. 6248197.
38. Darrah, R., et al., EDNRA variants associate with smooth muscle mRNA levels, cell proliferation rates, and cystic fibrosis pulmonary disease severity. Physiol Genomics, 2010. 41(1): p. 71-7.
39. Ozen, G., et al., Interaction between PGI2 and ET-1 pathways in vascular smooth muscle from Group-III pulmonary hypertension patients. Prostaglandins Other Lipid Mediat, 2020. 146: p. 106388.