1. Przedborski, S. (2008). Neurodegeneration. Neuroimmune Pharmacology, 1918, 229–237. https://doi.org/10.1007/978-0-387-72573-4_17
2. Przedborski, S., Vila, M., & Jackson-Lewis, V. (2003). Neurodegeneration: What is it and where are we? Journal of Clinical Investigation, 111(1), 3–10. https://doi.org/10.1172/JCI200317522
3. Jellinger, K. A. (2010). Basic mechanisms of neurodegeneration: A critical update. Journal of Cellular and Molecular Medicine, 14(3), 457–487. https://doi.org/10.1111/j.1582-4934.2010.01010.x
4. Basha, F. H. (2021). Cellular and molecular mechanism in neurodegeneration : Possible role of neuroprotectants, (September 2020), 1–10. https://doi.org/10.1002/cbf.3630
5. Alghamdi, B. S. (2018). The neuroprotective role of melatonin in neurological disorders. Journal of Neuroscience Research, 96(7), 1136–1149. https://doi.org/10.1002/jnr.24220
6. Fernández, A., Ordõñez, R., Reiter, R. J., González-Gallego, J., & Mauriz, J. L. (2015). Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis. Journal of Pineal Research, 59(3), 292–307. https://doi.org/10.1111/jpi.12264
7. Chen, D., Zhang, T., & Lee, T. H. (2020). Cellular mechanisms of melatonin: Insight from neurodegenerative diseases. Biomolecules, 10(8), 1–26. https://doi.org/10.3390/biom10081158
8. Davinelli, S., Maes, M., Corbi, G., Zarrelli, A., Willcox, D. C., & Scapagnini, G. (2016). Dietary phytochemicals and neuro-inflammaging: From mechanistic insights to translational challenges. Immunity and Ageing, 13(1), 1–17. https://doi.org/10.1186/s12979-016-0070-3
9. Ahmadi, Z., & Ashrafizadeh, M. (2020). Melatonin as a potential modulator of Nrf2. Fundamental and Clinical Pharmacology, 34(1), 11–19. https://doi.org/10.1111/fcp.12498
10. Marsh, A. P. (2019). Molecular mechanisms of proteinopathies across neurodegenerative disease: a review. Neurological Research and Practice, 1(1), 1–7. https://doi.org/10.1186/s42466-019-0039-8
11. Chauhan, N. B., & Mehla, J. (2015). Ameliorative Effects of Nutraceuticals in Neurological Disorders. Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease: Prevention and Therapy. Elsevier Inc. https://doi.org/10.1016/B978-0-12-411462-3.00027-8
12. Xiang, C., Wang, Y., Zhang, H., & Han, F. (2017). The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis, 22(1), 0. https://doi.org/10.1007/s10495-016-1296-4
13. Lou, G., Palikaras, K., Lautrup, S., Scheibye-Knudsen, M., Tavernarakis, N., & Fang, E. F. (2020). Mitophagy and Neuroprotection. Trends in Molecular Medicine, 26(1), 8–20. https://doi.org/10.1016/j.molmed.2019.07.002
14. Hetz, C., & Saxena, S. (2017). ER stress and the unfolded protein response in neurodegeneration. Nature Reviews Neurology, 13(8), 477–491. https://doi.org/10.1038/nrneurol.2017.99
15. Adams, C. J., Kopp, M. C., Larburu, N., Nowak, P. R., & Ali, M. M. U. (2019). Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Frontiers in Molecular Biosciences, 6(MAR), 1–12. https://doi.org/10.3389/fmolb.2019.00011
16. Scheper, W., & Hoozemans, J. J. M. (2015). The unfolded protein response in neurodegenerative diseases: a neuropathological perspective. Acta Neuropathologica, 130(3), 315–331. https://doi.org/10.1007/s00401-015-1462-8
17. Yeganeh, B., Jäger, R., Gorman, A. M., Samali, A., & Ghavami, S. (2015). Induction of Autophagy: Role of Endoplasmic Reticulum Stress and Unfolded Protein Response. Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and Aging, 7, 91–101. https://doi.org/10.1016/B978-0-12-801043-3.00005-4
18. Markouli, M., Strepkos, D., Papavassiliou, A. G., & Piperi, C. (2020). Targeting of endoplasmic reticulum (ER) stress in gliomas. Pharmacological Research, 157(March), 104823. https://doi.org/10.1016/j.phrs.2020.104823
19. da Silva, D. C., Valentão, P., Andrade, P. B., & Pereira, D. M. (2020). Endoplasmic reticulum stress signaling in cancer and neurodegenerative disorders: Tools and strategies to understand its complexity. Pharmacological Research, 155(February), 104702. https://doi.org/10.1016/j.phrs.2020.104702
20. Luo, F., Sandhu, A. F., Rungratanawanich, W., Williams, G. E., Akbar, M., Zhou, S., … Wang, X. (2020). Melatonin and autophagy in aging-related neurodegenerative diseases. International Journal of Molecular Sciences, 21(19), 1–31. https://doi.org/10.3390/ijms21197174
21. Srinivasan, V., Pandi-Perumal, S. R., Maestroni, G. J. M., Esquifino, A. I., Hardeland, R., & Cardinali, D. P. (2005). Role of melatonin in neurodegenerative diseases. Neurotoxicity Research, 7(4), 293–318. https://doi.org/10.1007/BF03033887
22. Liu, T., Zhang, L., Joo, D., & Sun, S. C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy, 2(March). https://doi.org/10.1038/sigtrans.2017.23
23. Ahmed, S. M. U., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et Biophysica Acta - Molecular Basis of Disease, 1863(2), 585–597. https://doi.org/10.1016/j.bbadis.2016.11.005
24. Sekar, A., Soundhararajan, R., & Srinivasan, H. (2021). In silico analysis of quercetin and its analogues against targeted proteins. Biointerface Research in Applied Chemistry, 11(5), 13695–13705. https://doi.org/10.33263/BRIAC115.1369513705
25. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design. Current Computer Aided Drug Design, 7(2), 146–157. Retrieved from https://www.ingentaconnect.com/content/ben/cad/2011/00000007/00000002/art00008%0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf
26. Lindholm, D., Wootz, H., & Korhonen, L. (2006). ER stress and neurodegenerative diseases. Cell Death and Differentiation, 13(3), 385–392. https://doi.org/10.1038/sj.cdd.4401778
27. Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
28. Ã, C. A. L. (2004). Lead profiling Lead- and drug-like compounds : the rule-of-five revolution, 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
29. Ditri, E. L. Z. and J. W. (2017). 乳鼠心肌提取 HHS Public Access. Physiology & behavior, 176(1), 139–148. https://doi.org/10.1016/j.addr.2016.05.007.BDDCS
30. Li, A. P. (2001). Screening for human ADME/Tox drug properties in drug discovery. Drug Discovery Today, 6(7), 357–366. https://doi.org/10.1016/S1359-6446(01)01712-3
31. Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(October 2016), 1–13. https://doi.org/10.1038/srep42717
32. Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
33. Leeson, P. D., & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews Drug Discovery, 6(11), 881–890. https://doi.org/10.1038/nrd2445
34. Lipinski, C. A. (2003). Compound Properties and Drug Quality. The Practice of Medicinal Chemistry: Second Edition (Second Edi.). Elsevier Inc. https://doi.org/10.1016/B978-012744481-9/50025-8
35. Husain, A., Ahmad, A., Khan, S. A., Asif, M., Bhutani, R., & Al-Abbasi, F. A. (2016). Synthesis, molecular properties, toxicity and biological evaluation of some new substituted imidazolidine derivatives in search of potent anti-inflammatory agents. Saudi Pharmaceutical Journal, 24(1), 104–114. https://doi.org/10.1016/j.jsps.2015.02.008
36. Rajasekaran, S., Prasad, P., & Rao, G. K. (2020). iMedPub Journals Molecular Properties and Bio-Activity Score of 2 {[ 2- ( 4-chlorophenyl ) -4- oxoquinazolin-3 ( 4H ) -yl ] amino } -N- ( substitutedphenyl ) acetamides Molinspiration software, 3, 12–14. https://doi.org/10.36648/0975-9344.12.1.153
37. Lutfiya, A. S., Priya, S., Manzoor, M. A. P., & Hemalatha, S. (2019). Molecular docking and interactions between vascular endothelial growth factor (VEGF) receptors and phytochemicals: An in-silico study. Biocatalysis and Agricultural Biotechnology, 22(October), 101424. https://doi.org/10.1016/j.bcab.2019.101424
38. Lenniger. (2014). Biochemsitry, 459(7245), 356–363. https://doi.org/10.1038/nature08144.The