1. Ding, S. S. L., Subbiah, S. K., Khan, M. S. A., Farhana, A. & Mok, P. L. Empowering mesenchymal stem cells for ocular degenerative disorders. International Journal of Molecular Sciences vol. 20 (2019).
2. Adak, S., Magdalene, D., Deshmukh, S., Das, D. & Jaganathan, B. G. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Reviews and Reports (2021) doi:10.1007/s12015-020-10090-x.
3. Volarevic, V. et al. Ethical and safety issues of stem cell-based therapy. International Journal of Medical Sciences vol. 15 36–45 (2018).
4. Yu, B., Li, X. R. & Zhang, X. M. Mesenchymal stem cell-derived extracellular vesicles as a new therapeutic strategy for ocular diseases. World J. Stem Cells 12, 178–187 (2020).
5. Deng, C. L. et al. Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration. Cell Death Differ. 28, 1041–1061 (2020).
6. Yang, B., Chen, Y. & Shi, J. Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms. Adv Mater 31, e1802896 (2019).
7. Pegtel, D. M. & Gould, S. J. Exosomes. Annu Rev Biochem 88, 487–514 (2019).
8. Théry, C. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, (2018).
9. Bian, B. et al. Exosomes derived from neural progenitor cells preserve photoreceptors during retinal degeneration by inactivating microglia. J. Extracell. Vesicles 9, 1748931 (2020).
10. Seyedrazizadeh, S. Z. et al. Extracellular vesicles derived from human ES-MSCs protect retinal ganglion cells and preserve retinal function in a rodent model of optic nerve injury. Stem Cell Res. Ther. 11, 203 (2020).
11. Mead, B. & Tomarev, S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through mirna-dependent mechanisms. Stem Cells Transl. Med. 6, 1273–1285 (2017).
12. Luo, L. et al. Potential roles of dental pulp stem cells in neural regeneration and repair. Stem Cells International vol. 2018 (2018).
13. Kolar, M. K. et al. The neurotrophic effects of different human dental mesenchymal stem cells. Sci. Rep. 7, 1–12 (2017).
14. De Almeida, J. F. A., Chen, P., Henry, M. A. & Diogenes, A. Stem cells of the apical papilla regulate trigeminal neurite outgrowth and targeting through a BDNF-dependent mechanism. Tissue Eng. - Part A 20, 3089–3100 (2014).
15. Mead, B., Logan, A., Berry, M., Leadbeater, W. & Scheven, B. A. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 9, (2014).
16. Mead, B., Logan, A., Berry, M., Leadbeater, W. & Scheven, B. A. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Investig. Ophthalmol. Vis. Sci. 54, 7544–7556 (2013).
17. Sonoyama, W. et al. Characterization of the Apical Papilla and Its Residing Stem Cells from Human Immature Permanent Teeth: A Pilot Study. J. Endod. 34, 166–171 (2008).
18. Yu, S., Zhao, Y., Ma, Y. & Ge, L. Profiling the secretome of human stem cells from dental apical papilla. Stem Cells Dev. 25, 499–508 (2016).
19. Karamali, F., Esfahani, M. H. N., Taleahmad, S., Satarian, L. & Baharvand, H. Stem cells from apical papilla promote differentiation of human pluripotent stem cells towards retinal cells. Differentiation 101, 8–15 (2018).
20. Kang, J., Fan, W., Deng, Q., He, H. & Huang, F. Stem Cells from the Apical Papilla: A Promising Source for Stem Cell-Based Therapy. BioMed Research International vol. 2019 (2019).
21. Huyen Phan, T. et al. New multiscale characterisation methodology for effective determination of isolation-structure-function relationship of extracellular vesicles. bioRxiv 2021.02.09.430523 (2021) doi:10.1101/2021.02.09.430523.
22. Lamparski, H. G. et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 270, 211–226 (2002).
23. Webber, J. & Clayton, A. How pure are your vesicles? J. Extracell. Vesicles 2, (2013).
24. Momen-Heravi, F. et al. Current methods for the isolation of extracellular vesicles. Biological Chemistry vol. 394 1253–1262 (2013).
25. Islam, N. & Saye, S. MEMS Microfluidics for Lab-on-a-Chip Applications. in Microelectromechanical Systems and Devices (InTech, 2012). doi:10.5772/39206.
26. Chen, J. et al. Rapid and efficient isolation and detection of extracellular vesicles from plasma for lung cancer diagnosis. Lab Chip 19, 432–443 (2019).
27. Ibsen, S. D. et al. Rapid Isolation and Detection of Exosomes and Associated Biomarkers from Plasma. ACS Nano 11, 6641–6651 (2017).
28. Lewis, J. M. et al. Integrated Analysis of Exosomal Protein Biomarkers on Alternating Current Electrokinetic Chips Enables Rapid Detection of Pancreatic Cancer in Patient Blood. ACS Nano 12, 3311–3320 (2018).
29. Hadady, H., Wong, J. J., Hiibel, S. R., Redelman, D. & Geiger, E. J. High frequency dielectrophoretic response of microalgae over time. Electrophoresis 35, (2014).
30. Ramos, A., Morgan, H., Green, N. G. & Castellanos, A. Ac electrokinetics: a review of forces in microelectrode structures. J. Phys. D Appl. Phys. 31, 2338–2353 (1998).
31. Peng, Y., Tang, L. & Zhou, Y. Subretinal Injection: A Review on the Novel Route of Therapeutic Delivery for Vitreoretinal Diseases. Ophthalmic Res. 58, 217–226 (2017).
32. Dureau, P. et al. Quantitative analysis of subretinal injections in the rat. Graefe’s Arch. Clin. Exp. Ophthalmol. 238, 608–614 (2000).
33. Vezina, M. et al. Determination of Injectable Intravitreous Volumes in Rats. ARVO Annu. Meet. Abstr. 1–2 (2011).
34. Hadady, H. et al. AC electrokinetic isolation and detection of extracellular vesicles from dental pulp stem cells: Theoretical simulation incorporating fluid mechanics. Electrophoresis elps.202000376 (2021) doi:10.1002/elps.202000376.
35. Wang, J., Bonacquisti, E. E., Brown, A. D. & Nguyen, J. Boosting the Biogenesis and Secretion of Mesenchymal Stem Cell-Derived Exosomes. Cells 9, 660 (2020).
36. M’Barek, K. Ben et al. Human ESC–derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci. Transl. Med. 9, (2017).
37. Tzameret, A. et al. Evaluation of visual function in Royal College of Surgeon rats using a depth perception visual cliff test. Vis. Neurosci. 36, (2019).
38. Fan, X. L., Zhang, Y., Li, X. & Fu, Q. L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cellular and Molecular Life Sciences vol. 77 2771–2794 (2020).
39. Ryals, R. C. et al. Long-term characterization of retinal degeneration in royal college of surgeons rats using spectral-domain optical coherence tomography. Investig. Ophthalmol. Vis. Sci. 58, 1378–1386 (2017).
40. Carr, A.-J. et al. Protective Effects of Human iPS-Derived Retinal Pigment Epithelium Cell Transplantation in the Retinal Dystrophic Rat. PLoS One 4, e8152 (2009).
41. Dai, J., Fu, Y., Zeng, Y., Li, S. & Qin Yin, Z. Improved retinal function in RCS rats after suppressing the over-activation of mGluR5. Sci. Rep. 7, 1–14 (2017).
42. Luzuriaga, J. et al. Advances and perspectives in dental pulp stem cell based neuroregeneration therapies. International Journal of Molecular Sciences vol. 22 3546 (2021).
43. Abuarqoub, D. et al. Neuro-regenerative potential of dental stem cells: a concise review. Cell and Tissue Research vol. 382 267–279 (2020).
44. Imanishi, Y. et al. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects. Inflamm. Regen. 41, 12 (2021).
45. Kong, F. et al. Dental Pulp Stem Cell-Derived Extracellular Vesicles Mitigate Haematopoietic Damage after Radiation. Stem Cell Rev. Reports 17, 318–331 (2021).
46. Ke, Y. et al. Human embryonic stem cell-derived extracellular vesicles alleviate retinal degeneration by upregulating Oct4 to promote retinal Müller cell retrodifferentiation via HSP90. Stem Cell Res. Ther. 12, 21 (2021).
47. Woods, J., Pellegrino, J. & Burch, J. Generalized guidance for considering pore-size distribution in membrane distillation. J. Memb. Sci. 368, 124–133 (2011).
48. Wenzel, A., Grimm, C., Samardzija, M. & Remé, C. E. Molecular mechanisms of light-induced photoreceptor apoptosis and neuroprotection for retinal degeneration. Progress in Retinal and Eye Research vol. 24 275–306 (2005).
49. Noailles, A. et al. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci. Rep. 6, 1–16 (2016).
50. Zhang, S., Ye, J. & Dong, G. Neuroprotective effect of baicalein on hydrogen peroxide-mediated oxidative stress and mitochondrial dysfunction in PC12 cells. J. Mol. Neurosci. 40, 311–320 (2010).
51. Bray, A. F., Cevallos, R. R., Gazarian, K. & Lamas, M. Human dental pulp stem cells respond to cues from the rat retina and differentiate to express the retinal neuronal marker rhodopsin. Neuroscience 280, 142–155 (2014).
52. Pardue, M. T. & Allen, R. S. Neuroprotective strategies for retinal disease. Progress in Retinal and Eye Research vol. 65 50–76 (2018).
53. Cabral, T. et al. Retinal and choroidal angiogenesis: A review of new targets. International Journal of Retina and Vitreous vol. 3 31 (2017).
54. Paulus, Y. M. & Sodhi, A. Anti-angiogenic therapy for retinal disease. in Handbook of Experimental Pharmacology vol. 242 271–307 (Springer New York LLC, 2017).
55. Liu, Y. et al. Exosomes derived from stem cells from apical papilla promote craniofacial soft tissue regeneration by enhancing Cdc42-mediated vascularization. Stem Cell Res. Ther. 12, 1–14 (2021).
56. Bakopoulou, A. et al. Angiogenic Potential and Secretome of Human Apical Papilla Mesenchymal Stem Cells in Various Stress Microenvironments. Stem Cells Dev. 24, 2496–2512 (2015).