RC is a crucial cause of cancer-related deaths worldwide. Preoperative or postoperative chemoradiotherapy is the gold standard treatment for RC. Moreover, TME is a crucial procedure in the surgical treatment of RC. However, TME is a skill-dependent procedure and plays a critical role in the prognosis. Previous studies have shown that complete TME with adequate CRM significantly affects the OS and local recurrence[2, 3].
The first laparoscopic colectomy was performed in 1991[14], which was then performed increasingly by surgeons as an alternative intervention for achieving better short-term outcome compared with open surgery. Nevertheless, laparoscopic rectal TME is challenging owing to the limited anatomic pelvic surgical plane, rigidity of scope, hand tremor of camera-holding assistant, and resolution of two-dimensional visualization. This shortcoming paved way for the first robotic colon surgery in 2002, and this new minimally-invasive system tried to overcome the disadvantages of the conventional LS and improve the clinical outcomes. Additionally, the learning curve for RS is reported to be lesser than conventional LS[14, 15]. In current modern medicine, robotic surgery is considered as a revolutionary procedure and one of the best treatment options for patients with RC. Previous reviews have shown that robotic-assisted intervention has significant benefits in rectal surgery. Moreover, it can also preserve urinary and sexual functions [16]. Notably, robotic intervention has been widely used in various cancer surgeries. Therefore, it is imperative to address the oncological outcomes of the three different surgical TME methods in patients with RC, namely RS, LS, and open surgery.
Our study included 300 consecutive patients with RC, and no intergroup differences related to age and sex were observed. The LS group had longer proximal resection margin; however, no differences were observed regarding distal margin, TME status, and adequacy of lymph node retrieval, which was concordant with previous literatures[17-19]. Regarding the number of harvested lymph nodes, a lesser amount was noted in the RS group, of which was the same as that observed by Lee et al.[20]. The possible reason for this finding was a higher proportion of patients receiving preoperative CCRT in this group. A previous study had revealed that neoadjuvant chemotherapy was a significant factor for inadequate harvesting of lymph nodes in colon cancer owing to lymphocyte destruction and post-radiation fibrosis[21]. On the other hand, fewer than 12 lymph nodes retrieved in patients with RC who underwent neoadjuvant radiotherapy was considered to be an excellent indicator of tumor response, better local lesion control, and a positive prognostic factor. Upon comparing the adequacy of lymph node retrieval, no differences were observed between the three methods. Microscopically, no differences were noted regarding the histologic grade, PNI, and CRM distance between the three groups. In addition, LVI and advanced stage were observed in the LS group, probably because of fewer patients receiving preoperative CCRT in the LS group because neoadjuvant therapy can decrease the size of tumor cells, besides downstaging or even causing complete remission after the treatment[22]. However, no differences were noted regarding TRS and pCR among the three groups. More postoperative recurrence was also noted in the LS group, which may be related to higher CRM involvement. Consistent with previous literatures, the evidences also showed the non-inferiority of LS compared with open surgery for clear CRM and complete TME was not established or supported [23, 24].
Concerning the role of CRM in patients with RC, 10% of our patients had CRM involvement by tumors. Higher CRM involvement was identified` in the LS group, larger tumor size, poorly-differentiated histologic grade, presence of LVI/PNI, advanced pathologic stage, and deeper tumor invasion. Patients with preoperative CCRT and lower TRS after CCRT were associated with lesser CRM involvement. However, after logistic regression modelling, the results showed that histologic grade, tumor depth stage, and preoperative CCRT were the independent factors of CRM involvement. Likewise, Nikberg et al. reported that higher CRM involvement was noted in patients with advanced stage [25]. Accordingly, advanced stage was considered the most crucial factor of CRM involvement in patients with RC.
Upon Kaplan-Meier survival analysis, no significance was noted related to age, sex, tumor size, resection margin (proximal and distal), CCRT status, number of lymph nodes retrieved, and histologic grade (data not shown). However, surgical methods, advanced pathologic stage, CRM involvement, and TRS after CCRT were all identified to be significantly associated with OS. The results were concordant with several previous studies[19]. Kim et al. reported that RS had a significant prognostic role for OS and cancer-specific survival, thereby suggesting its potential oncological benefits; however, the final data showed that histologic grade and pathologic stage were the independent prognostic markers in patients with RC[26]. Furthermore, we evaluated the parameters for predicting recurrence by DFS, and it showed surgical methods, CRM involvement, and histologic grade were independent factors for recurrence in these patients. Our RS group had significantly lower postoperative local recurrence and better DFS compared with other groups, which was consistent with a previous 54-month follow-up study conducted by Yamaguchi et al.[27]. The probable reason for this may be the less CRM involvement in RS patients. Ghezzi et al. also demonstrated that their RS group had a relatively low cumulative local recurrence rate [17]; conversely, several studies showed no differences among these groups, but all of them had enrolled few patients or had shorter follow-up periods [28-31].
Recent literatures have revealed that less estimated blood loss, faster recovery time, and shorter length of postoperative stay were observed in RS compared with open surgery[17, 31, 32]. Considering the limited place in the pelvic area, RS can provide tridimensional view, tremor filtering, better image resolution, and wider operative plane owing to the improved technique. RS results in bloodless surgery, less postoperative pain, fewer conversion rates, nerve-sparing, lower overall complications, and fewer rates of CRM involvement compared with than LS[17, 33-36]. Furthermore, RS contributes to faster return of bowel movements and oral intake, both of which decrease the postoperative hospital stay[32, 37]. Thus, based on our investigation, the oncological outcome of RS was comparatively better than that of LS or open surgery, thereby providing better quality of treatment. Therefore, robotic-assisted surgery could be a suitable treatment option in patients with RC.
Nonetheless, this cohort study had some limitations. First, it was not a randomized-control trial and the clinicopathologic analysis was performed retrospectively. Second, although no differences were noted related to age and sex in these three methods, a higher ratio of CCRT and pathologic complete response was still noted in the RS group. Therefore, a hidden bias may exist that might influence other factors statistically. For adjusting the selection biases, we used logistic regression modelling of multivariate analysis to analyze the CRM status and prognosis factors. Tumor stage and histologic grade were confirmed to play the most significant role in CRM involvement.