1. Dougados, M. and D. Baeten, Spondyloarthritis. Lancet, 2011. 377(9783): p. 2127-2137.
2. Zhao, J., et al., Prevalence of ankylosing spondylitis in a Chinese population: a systematic review and meta-analysis. Rheumatol Int, 2020. 40(6): p. 859-872.
3. Smith, J.A., Update on ankylosing spondylitis: current concepts in pathogenesis. Curr Allergy Asthma Rep, 2015. 15(1): p. 489.
4. Liu, W., et al., Elevated serum levels of IL-6 and IL-17 may associate with the development of ankylosing spondylitis. Int J Clin Exp Med, 2015. 8(10): p. 17362-17376.
5. Wu, Y., et al., Risk Factors of Renal Involvement Based on Different Manifestations in Patients with Ankylosing Spondylitis. Kidney Blood Press. Res., 2018. 43(2): p. 367-377.
6. Maksymowych, W.P., et al., Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum, 2007. 56(6): p. 1846-53.
7. Stupphann, D., et al., Intracellular and surface RANKL are differentially regulated in patients with ankylosing spondylitis. Rheumatol. Int., 2008. 28(10): p. 987-993.
8. Lacey, D.L., et al., Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 1998. 93(2): p. 165-176.
9. Yasuda, H., et al., Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology, 1998. 139(3): p. 1329-1337.
10. Ma, Q., et al., Mature osteoclast-derived apoptotic bodies promote osteogenic differentiation via RANKL-mediated reverse signaling. J. Biol. Chem., 2019. 294(29): p. 11240-11247.
11. Anderson, D.M., et al., A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature, 1997. 390(6656): p. 175-179.
12. Amin, N., et al., Probiotics and bone disorders: the role of RANKL/RANK/OPG pathway. Aging Clin Exp Res, 2019.
13. Nagy, V. and J.M. Penninger, The RANKL-RANK Story. Gerontology, 2015. 61(6): p. 534-542.
14. Hofbauer, L.C. and A.E. Heufelder, Role of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin in bone cell biology. J. Mol. Med., 2001. 79(5-6): p. 243-253.
15. Kong, Y.Y., et al., OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature, 1999. 397(6717): p. 315-323.
16. Nakashima, T., M. Hayashi, and H. Takayanagi, New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol. Metab., 2012. 23(11): p. 582-590.
17. Jones, R.M., J.G. Mulle, and R. Pacifici, Osteomicrobiology: The influence of gut microbiota on bone in health and disease. Bone, 2018. 115: p. 59-67.
18. de Vries, T.J. and C. Huesa, The Osteocyte as a Novel Key Player in Understanding Periodontitis Through its Expression of RANKL and Sclerostin: a Review. Curr Osteoporos Rep, 2019. 17(3): p. 116-121.
19. Du, W., et al., MiR-495 targeting dvl-2 represses the inflammatory response of ankylosing spondylitis. Am J Transl Res, 2019. 11(5): p. 2742-2753.
20. Dhir, V., R. Srivastava, and A. Aggarwal, Circulating Levels of Soluble Receptor Activator of NF- κ B Ligand and Matrix Metalloproteinase 3 (and Their Antagonists) in Asian Indian Patients with Ankylosing Spondylitis. Int J Rheumatol, 2013. 2013: p. 814350.
21. Taylan, A., et al., Biomarkers and cytokines of bone turnover: extensive evaluation in a cohort of patients with ankylosing spondylitis. BMC Musculoskelet Disord, 2012. 13: p. 191.
22. van der Linden, S., H.A. Valkenburg, and A. Cats, Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum., 1984. 27(4): p. 361-368.
23. Sieper, J., et al., The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis, 2009. 68 Suppl 2: p. ii1-44.
24. Stang, A., Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur. J. Epidemiol., 2010. 25(9): p. 603-605.
25. Zintzaras, E. and J.P. Ioannidis, Heterogeneity testing in meta-analysis of genome searches. Genet. Epidemiol., 2005. 28(2): p. 123-137.
26. Higgins, J.P. and S.G. Thompson, Quantifying heterogeneity in a meta-analysis. Stat Med, 2002. 21(11): p. 1539-1558.
27. Song, F. and S. Gilbody, Bias in meta-analysis detected by a simple, graphical test. Increase in studies of publication bias coincided with increasing use of meta-analysis. Bmj, 1998. 316(7129): p. 471.
28. Peters, J.L., et al., Comparison of two methods to detect publication bias in meta-analysis. Jama, 2006. 295(6): p. 676-680.
29. AN Xiao-bei, et al. Analysis of related factor osteoporosis in ankylosing spondylitis .J. CHINESE JOU RNAL OF RHEUMATOLOGY.2010 14(9): p. 620-623.
30. Chen, C.H., et al., Soluble receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin in ankylosing spondylitis: OPG is associated with poor physical mobility and reflects systemic inflammation. Clin. Rheumatol., 2010. 29(10): p. 1155-1161.
31. Hou, C., L. Luan, and C. Ren, Oxidized low-density lipoprotein promotes osteoclast differentiation from CD68 positive mononuclear cells by regulating HMGB1 release. Biochem. Biophys. Res. Commun., 2018. 495(1): p. 1356-1362.
32. LI Xiu-juan, et al, The study on the expression of interieukin17 and receptor activator of nuclear factors κB-ligand in serum of patients with Ankylosing spondylitis . J Chinese Journal of Rheumatology. 2013. 17(11): p. 769-771.
33. Luo Hong-yu, Expression and signifinance of serum OPG and sRANKL in patients with Ankylosing spondylitis . Jiangsu Med J . 2011. 37(23): p. 2770-2772.
34. Wei Rong-mei, et al.Correlation of Bone Metabolic Indexes and Levels of RANKL - RANK - OPG System in Ankylosing Spondylitis Patients . J Progres s in Modern Biomedicine. 2013. 13(13): p. 2528-2531,2546.
35. Zhang Zheng , et al. Clinical significance of detection of MIF, IL23, RANKL,OPG and DKK1 in peripheral blood of patients with active ankylosing spondylitis .2018. 40(02): p. 178-182.
36. Zhao Wen-hua,et al. Osteoclast precursors in perip heral blood of patients with
Ankylosing spondylitis. J CHINESE JOURNAL OF RHEUMATOLOGY. 2010. 14(6): p. 373-376.
37. Shen jian, et al. Clinical significance of RANKL, TGF - β1and TGF - β2 in ankylosing spondylitis %J , Shaanxi Medical Journal . 2019. 48(08): p. 981-983.
38. Huang xianqian, et al., Correlation of serum TNF - α, RANKL, OPG and IL - 34 levels with enthesitis in patients with ankylosing spondylitis .J. Zhejiang Medical Journal .2018. 40(22): p. 2454-2458.
39. Zhang peiyi, et al. Expression of chemokine CXCL16 and its receptor CXCR6 can be suppressed by rcombinant human TNF receptor α ⅡIg fusion protein in ankylosing spondylitis %J Journal of Shandong University(Health Sciences) . 2015. 53(12): p. 5156.
40. Zhang, P., et al., TNF Receptor:Fc Fusion Protein Downregulates RANKL/OPG Ratio by Inhibiting CXCL16/CXCR6 in Active Ankylosing Spondylitis. Curr Pharm Biotechnol, 2020.
41. Gouveia, E.B., D. Elmann, and M.S. Morales, Ankylosing spondylitis and uveitis: overview. Rev Bras Reumatol, 2012. 52(5): p. 742-756.
42. Cortes, A., et al., Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann. Rheum. Dis., 2015. 74(7): p. 1387-1393.
43. Kim, H.R., et al., Elevated serum levels of soluble receptor activator of nuclear factors-kappaB ligand (sRANKL) and reduced bone mineral density in patients with ankylosing spondylitis (AS). Rheumatology (Oxford), 2006. 45(10): p. 1197-1200.
44. Fan, J., et al., I-BET151 inhibits expression of RANKL, OPG, MMP3 and MMP9 in ankylosing spondylitis and. Exp Ther Med, 2017. 14(5): p. 4602-4606.
45. Ji, W., et al., Beneficial effects of tripterygium glycosides tablet on biomarkers in patients with ankylosing spondylitis. Mol Med Rep, 2015. 12(1): p. 684-690.
46. Holmdahl, R., et al., Collagen induced arthritis as an experimental model for rheumatoid arthritis. Immunogenetics, pathogenesis and autoimmunity. Apmis, 1989. 97(7): p. 575-584.
47. Nakashima, T., et al., Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med., 2011. 17(10): p. 1231-1234.
48. Jones, D.H., Y.Y. Kong, and J.M. Penninger, Role of RANKL and RANK in bone loss and arthritis. Ann. Rheum. Dis., 2002. 61 Suppl 2: p. ii32-9.
49. Hinze, A.M. and G.H. Louie, Osteoporosis Management in Ankylosing Spondylitis. Curr Treatm Opt Rheumatol, 2016. 2(4): p. 271-282.
50. Kovács, B., E. Vajda, and E.E. Nagy, Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci, 2019. 20(18).
51. Tobeiha, M., et al., RANKL/RANK/OPG Pathway: A Mechanism Involved in Exercise-Induced Bone Remodeling. Biomed Res Int, 2020. 2020: p. 6910312.
52. Ozaki, Y., et al., Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis. PLoS One, 2017. 12(9): p. e0184904.
53. Hu, Z., et al., Serum from patients with ankylosing spondylitis can increase PPARD, fra-1, MMP7, OPG and RANKL expression in MG63 cells. Clinics (Sao Paulo), 2015. 70(11): p. 738-742.
54. Atkinson, S.M., et al., Anti-RANKL treatment inhibits erosive joint destruction and lowers inflammation but has no effect on bone formation in the delayed-type hypersensitivity arthritis (DTHA) model. Arthritis Res. Ther., 2016. 18: p. 28.
55. Metzger, C.E. and S.A. Narayanan, The Role of Osteocytes in Inflammatory Bone Loss. Front Endocrinol (Lausanne), 2019. 10: p. 285.
56. Wong, B.R., et al., TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem., 1997. 272(40): p. 25190-25194.
57. Varsani, H., et al., Synovial dendritic cells in juvenile idiopathic arthritis (JIA) express receptor activator of NF-kappaB (RANK). Rheumatology (Oxford), 2003. 42(4): p. 583-590.
58. Kim, N., et al., Diverse roles of the tumor necrosis factor family member TRANCE in skeletal physiology revealed by TRANCE deficiency and partial rescue by a lymphocyte-expressed TRANCE transgene. Proc. Natl. Acad. Sci. U.S.A., 2000. 97(20): p. 10905-10910.
59. Dankbar, B., et al., Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat. Med., 2015. 21(9): p. 1085-1090.
60. Di Munno, O. and F. Ferro, The effect of biologic agents on bone homeostasis in chronic inflammatory rheumatic diseases. Clin. Exp. Rheumatol. 37(3): p. 502-507.
61. Hoffmann, D.B., et al., In Vivo siRNA Delivery Using JC Virus-like Particles Decreases the Expression of RANKL in Rats. Mol Ther Nucleic Acids, 2016. 5: p. e298.
62. Wei, C.M., et al., Monocrotaline Suppresses RANKL-Induced Osteoclastogenesis In Vitro and Prevents LPS-Induced Bone Loss In Vivo. Cell. Physiol. Biochem., 2018. 48(2): p. 644-656.
63. Zochling, J., Measures of symptoms and disease status in ankylosing spondylitis: Ankylosing Spondylitis Disease Activity Score (ASDAS), Ankylosing Spondylitis Quality of Life Scale (ASQoL), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score (BAS-G), Bath Ankylosing Spondylitis Metrology Index (BASMI), Dougados Functional Index (DFI), and Health Assessment Questionnaire for the Spondylarthropathies (HAQ-S). Arthritis Care Res (Hoboken), 2011. 63 Suppl 11: p. S47-58.
64. Watad, A., et al., The Early Phases of Ankylosing Spondylitis: Emerging Insights From Clinical and Basic Science. Front Immunol, 2018. 9: p. 2668.
65. Klingberg, E., et al., Biomarkers of bone metabolism in ankylosing spondylitis in relation to osteoproliferation and osteoporosis. J. Rheumatol., 2014. 41(7): p. 1349-56.
66. Wan, X., et al., Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol, 2014. 14: p. 135.