1. Westgate, M. E. & Boyer, J. S. Silk and pollen water potentials in maize. Crop Science 26, 947–951 (1986).
2. Westgate, M. E. & Boyer, J. S. Reproductive at low silk and pollen water potentials in maize. Crop Science 26, 951–956 (1986).
3. Cheng, P. C. & Pareddy, D. R. Morphology and development of the tassel and ear in The maize handbook (ed. Freeling, M. & Walbot, V.) https://doi.org/10.1007/978-1-4612-2694-9_5 (Springer, 1994).
4. Zinselmeier, C., Jeong, B. R. & Boyer, J. S. Starch and the control of kernel number in maize at low water potentials. Plant Physiology 121, 25–36 (1999)
5. Mock, J. J. & Pearce, R. B. An ideotype of maize. Euphytica 24, 613–623 (1975).
6. Duvick, D. N. Genetic progress in yield of united states maize (Zea mays L.). Maydica 50, 193–202 (2005).
7. Galinat, W. C. Evolution of corn. Advances in Agronomy 47, 203–231 (1992).
8. Campos, H., Cooper, M., Habben, J. E., Edmeades, G. O. & Schussler, J. R. Improving drought tolerance in maize: a view from industry. Field Crops Research 90, 19–34 (2004).
9. Bänziger, M. & Araus, J. L. Recent advances in breeding maize for drought and salinity stress in Advances in molecular breeding toward drought and salt tolerant crops (ed. Jenks, M. A., Hasegawa, P. M. & Jain, S. M) 587–601 (Springer, 2007).
10. Dai, A. Increasing drought under global warming in observations and models. Nature Climate Change 3, 52–58 (2013).
11. Schussler, J. R. & Westgate, M. E. Maize kernel set at low water potential: I. Sensitivity to reduced assimilates during early kernel growth. Crop Science 31, 1189–1195 (1991).
12. NeSmith, D. S. & Ritchie, J. T. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Research 28, 251–256 (1992).
13. Otegui, M. E., Andrade, F. H. & Suero, E. E. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Research 40, 87–94 (1995).
14. Cakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research 89, 1–6 (2004).
15. Schoper, J. B., Lambert, R. J. & Vasilas, B. L. Maize pollen viability and ear receptivity under water and high temperature stress. Crop Science 26, 1029–1033 (1986).
16. Faud-Hassan, A. V., Tardieu, F. & Turc, O. Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant Cell & Environment 31, 1349–1360 (2008).
17. Oury, V., Tardieu, F. & Turc, O. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiology 171, 986–996 (2016).
18. Edmeades, G. O., Bolanõs, J., Hernandez, M. & Bello, S. Causes for silk delay in a lowland tropical maize population. Crop Science 33,1029–1035 (1993).
19. Bolanõs, J. & Edmeades, G. O. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Research 31, 253–268 (1993).
20. Bolanõs, J. & Edmeades, G. O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Research 48, 65–80 (1996).
21. Setter, T. L. & Flannigan, B. A. Water deficit inhibits cell division and expression of transcripts involved in cell proliferation and endoreduplication in maize endosperm. Journal of Experimental Botany 52, 1401–1408 (2001).
22. Boyer, J. S. & Westgate, M. E. Grain yields with limited water. Journal of Experimental Botany, 55, 2385–2394 (2004).
23. McLaughlin, J. E. & Boyer, J. S. Sugar-responsive gene expression, invertase activity, and senescence in aborting maize ovaries at low water potentials. Annuls of Botany 94, 675–689 (2004).
24. Herrero, M. P. & Johnson, R. R. Drought stress and its effects on maize reproductive systems. Crop Science 21, 105–110 (1981).
25. Hall, A. J., Vilella, F., Trapani, N. & Chimenti, C. The effects of water stress and genotype on the dynamics of pollen-shedding and silking in maize. Field Crops Research 5, 349–363 (1982).
26. Saini, H. S. & Aspinall, D. Sterility in wheat (Triticum aestivum L.) induced by water deficit or high temperature: possible mediation by abscisic acid. Functional Plant Biology 9, 529–537 (1982).
27. Saini, H. S., Sedgley, M. & Aspinall, D. Effect of heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Functional Plant Biology 10, 137–144 (1983).
28. Sheoran, I. S. & Saini, H. S. Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sexual Plant Reproduction 9, 161–169 (1996).
29. Rang, Z. W., Jagadish, S. V., Zhou, Q. M., Craufurd, P. Q. & Heuer, S. Effect of high temperature and water stress on pollen germination and spikelet fertility in rice. Environment and Experimental Botany 70, 58–65 (2011).
30. Das, S., Krishnan, P., Nayak, M. & Ramakrishnan, B. High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environment and Experimental Botany 101, 36–46 (2014).
31. Onyemaobi, I., Liu, H., Siddique, K. H. & Yan, G. Both male and female malfunction contributes to yield reduction under water stress during meiosis in bread wheat. Frontiers in Plant Science 7, 2071 (2017).
32. Nguyen, G. N., Hailstones, D. L., Wilkes, M. & Sutton, B. G. Drought-induced oxidative conditions in rice anthers leading to a programmed cell death and pollen abortion. Journal of Agronomy and Crop Science 195, 157–164 (2009).
33. He, H. & Serraj, R. Involvement of peduncle elongation, anther dehiscence and spikelet sterility in upland rice response to reproductive-stage drought stress. Environmental and Experimental Botany 75, 120–127 (2012).
34. Fu, G. F., Song, J., Xiong, J., Li, Y. R., Chen, H. Z., Le, M. K. & Tao, L. X. Changes of oxidative stress and soluble sugar in anthers involve in rice pollen abortion under drought stress. Agricultural Sciences in China 10, 1016–1025 (2011).
35. Saini, H. S. Effects of water stress on male gametophyte development in plants. Sexual Plant Reproduction 10, 67–73 (1997).
36. Fonseca, A. E., Westgate, M. E., Grass, L. & Dornbos, D. L. Tassel morphology as an indicator of potential pollen production in maize. Online. Crop Management, https://doi:10.1094/CM-2003-0804-01-RS. (2003).
37. Sayadi Maazou, A. R., Tu, J., Qiu, J. & Liu, Z. Breeding for drought tolerance in maize (Zea mays L.). American Journal of Plant Sciences 7, 1858–1870 (2016).
38. Ariizumi, T. & Toriyama, K. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62, 437–460 (2011).
39. Furness, C. A., Conran, J. G., Gregory, T. & Rudall, P. J. The trichotomosulcate asparagoids: pollen morphology of Hemerocallidaceae in relation to systematics and pollination biology. Australian Systematic Botany 26, 393–407 (2014).
40. Edlund, A. F., Swanson, R. & Preuss, D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16, 84–97 (2004).
41. Falasca, G., D'angeli, S., Biasi, R., Fattorini, L., Matteucci, M., Canini, A. & Altamura, M. M. Tapetum and middle layer control male fertility in Actinidia deliciosa. Annuls of Botany 112, 1045–1055 (2013).
42. Chhun, T., Aya, K., Asano, K., Yamamoto, E., Morinaka, Y., Watanabe, M., Kitano, H., Ashikari, M., Matsuoka, M. & Ueguchi-Tanaka, M. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19, 3876–3888 (2007).
43. Oliver, S. N., Dennis, E. S. & Dolferus, R. ABA regulates apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in rice. Plant and Cell Physiology 48, 1319–1330 (2007).
44. Lalonde, S., Beebe, D. U. & Saini, H. S. Early signs of disruption of wheat anther development associated with the induction of male sterility by meiotic-stage water deficit. Sexual Plant Reproduction 10, 40–48 (1997).
45. Hanson, M. R. Plant mitochondrial mutations and male sterility. Annual Review of Genetics 25, 461–486 (1991).
46. Pelletier, G. & Budar, F. The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Current Opinion in Biotechnology 18, 121–125 (2007).
47. Worrall, D., Hird, D. L., Hodge, R., Paul, W., Draper, J. & Scott, R. Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4, 759–771 (1992).
48. Engelke, T., Hirsche, J. & Roitsch, T. Anther-specific carbohydrate supply and restoration of metabolically engineered male sterility. Journal of Experimental Botany 61, 2693–2706 (2010).
49. Chaves, M. M., Pereira, J. S., Maroco, J., Rodrigues, M. L., Ricardo, C. P., Osório, M. L., Carvalho, I., Faria, T. & Pinheiro, C. How plants cope with water stress in the field? Photosynthesis and growth. Annuls of Botany 89, 907–916 (2002).
50. Tezara, W., Mitchell, V., Driscoll, S. & Lawlor, D. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914–917 (1999).
51. Chenu, K., Chapman, S. C., Hammer, G. L., Mclean, G., Salah, H. B. & Tardieu, F. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize. Plant Cell &Environment 31, 378–391 (2008).
52. Li, Y., Tao, H., Zhang, B., Huang, S. & Wang, P. Timing of water deficit limits maize kernel setting in associated with changes in the source-flow-sink relationship. Frontiers in Plant Science 9, 1326 (2018).
53. Rossi, M., Bermudez, L. & Carrari, F. Crop yield: challenges from a metabolic perspective. Current Opinion in Biotechnology 25, 79–89 (2015).
54. Ruan, Y. L., Patrick, J. W., Bouzayen, M., Osorio, S. & Fernie, A. R. Molecular regulation of seed and fruit set. Trends in Plant Science 17, 656–665 (2012).
55. García, C. C., Nepi, M. & Pacini, E. It is a matter of timing: asynchrony during pollen development and its consequences on pollen performance in angiosperms–a review. Protoplasma 254, 57–73 (2017).
56. Wang, Y., Tao, H. ,Tian, B., Sheng, D., Xu, C., Zhou, H., Huang, S. & Wang, P. Flowering dynamic, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany 158, 80–88 (2019).
57. Saini, H. S. & Westgate, M. E. Reproductive development in grain crops during drought. Advances in Agronomy 68, 59–96 (2000).
58. Barnabás, B., Jäger, K. & Fehér, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell & Environment 31, 11–38 (2008).
59. Abendroth, L. J., Elmore, R. W., Boyer, M. J. & Marlay, S. K. Corn growth and development. Iowa State University Extension, Ames, Iowa (2011).
60. Begcy, K. & Dresselhaus, T. Tracking maize pollen development by the leaf collar method. Plant Reproduction 30, 171–178 (2017).
61. Joppa, L. R., McNeal, F. H. & Welsh, J. R. Pollen and anther development in cytoplasmic male sterile wheat (Triticum aestivum L.). Crop Science 6, 296–297 (1966).
62. Aylor, D. E. Rate of dehydration of corn (Zea mays L.) pollen in the air. Journal of Experimental Botany 54, 2307–2312 (2003).
63. Datta, R., Chamusco, K. C. & Chourey, P. S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiology 130, 1645–1656 (2002).
64. Begcy, K., Nosenko, T., Zhou, L., Fragner, L., Weckwerth, W. & Dresselhaus, T. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiology 181, 683–700 (2019).
65. Dorion, S., Lalonde, S. & Saini, H. S. Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiology 111, 137–145 (1996).
66. Fonseca, A. E. & Westgate, M. E. Relationship between desiccation and viability of maize pollen. Field Crops Research 94, 114–125 (2005).
67. Schoper, J. B., Lambert, R. J., Vasilas, B. L. & Westgate, M. E. Plant factors controlling seed set in maize. Plant Physiology 83, 121–125 (1987).
68. Ordoñez, B. Brochure: Pollen viability assessment. International Potato Center (CIP), Lima, Peru (2014).
69. Wang, L. L. Study on maize pollen vigor and competitive capability. China Agricultural University, Beijing, CN. pp 13–18 (2015).
70. Xiang, Z. B., Tao, H. B., Wu, Z., Wang, P. & Song, Q. F. Effects of high temperature on maize pollen viability. Journal of China Agricultural University 21, 25–29 (2016). (in Chinese with English abstract)
71. Impe, D., Reitz, J., Köpnick, C., Rolletschek, H., Börner, A., Senula, A. & Nagel, M. Assessment of pollen viability for wheat. Frontiers in Plant Science 10, 1588 (2020).
72. Pfahler, P. L. In vitro germination characteristics of maize pollen to detect biological activity of environmental pollutants. Environmental Health Perspectives 37, 125–132 (1981).
73. Cui, G. M., Sun, Y., Hao, Y. S., Du, J. Z. & Wang, Y. X. The improvement of maize pollen in vitro germination method and its role in pollen-mediated plant genetic transformation. Chinese Bulletin of Botany 47, 155–161 (2012). (in Chinese with English abstract)
74. Dresselhaus, T., Lausser, A. & Marton, M. L.Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses. Annuls of Botany 108, 727–737 (2011).
75. Ge, T., Sui, F., Bai, L., Tong, C. & Sun, N. Effects of water stress on growth, biomass partitioning, and water-use efficiency in summer maize (Zea mays L.) throughout the growth cycle. Acta Physiologiae Plantarum 34, 1043–1053 (2012).
76. Pálfi, G. & Köves, E. Determination of vitality of pollen on the basis of its amino acid content. Biochemie und Physiologie der Pflanzen 179, 237–240 (1984).
77. Firmage, D. H. & Dafni, A. Field tests for pollen viability: a comparative approach. Acta Horticulturae561, 81–94 (2001).