1 Birsoy, K. et al. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell 162, 540-551, doi:10.1016/j.cell.2015.07.016 (2015).
2 Ballabio, A. & Bonifacino, J. S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nature Reviews Molecular Cell Biology, doi:10.1038/s41580-019-0185-4 (2019).
3 Perera, R. M. & Zoncu, R. The Lysosome as a Regulatory Hub. Annu Rev Cell Dev Bi 32, 223-253, doi:10.1146/annurev-cellbio-111315-125125 (2016).
4 Boyman, L., Karbowski, M. & Lederer, W. J. Regulation of Mitochondrial ATP Production: Ca(2+) Signaling and Quality Control. Trends Mol Med, doi:10.1016/j.molmed.2019.10.007 (2019).
5 Stevenson, J., Huang, E. Y. & Olzmann, J. A. Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis. Annu Rev Nutr 36, 511-542, doi:10.1146/annurev-nutr-071715-051030 (2016).
6 Zong, Y. et al. Hierarchical activation of compartmentalized pools of AMPK depends on severity of nutrient or energy stress. Cell Res 29, 460-473, doi:10.1038/s41422-019-0163-6 (2019).
7 Mottis, A., Herzig, S. & Auwerx, J. Mitocellular communication: Shaping health and disease. Science 366, 827-832, doi:10.1126/science.aax3768 (2019).
8 Efeyan, A., Zoncu, R. & Sabatini, D. M. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18, 524-533, doi:10.1016/j.molmed.2012.05.007 (2012).
9 Thul, P. J. et al. A subcellular map of the human proteome. Science 356, doi:10.1126/science.aal3321 (2017).
10 Zhang, C. S. et al. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 548, 112-+, doi:10.1038/nature23275 (2017).
11 Wyant, G. A. et al. mTORC1 Activator SLC38A9 Is Required to Efflux Essential Amino Acids from Lysosomes and Use Protein as a Nutrient. Cell 171, 642-654 e612, doi:10.1016/j.cell.2017.09.046 (2017).
12 Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188-194, doi:10.1126/science.1257132 (2015).
13 Wagner, G. R. et al. A Class of Reactive Acyl-CoA Species Reveals the Non-enzymatic Origins of Protein Acylation. Cell Metab 25, 823-837 e828, doi:10.1016/j.cmet.2017.03.006 (2017).
14 Lin, A. et al. The LINK-A lncRNA interacts with PtdIns(3,4,5)P3 to hyperactivate AKT and confer resistance to AKT inhibitors. Nat Cell Biol 19, 238-251, doi:10.1038/ncb3473 (2017).
15 Lin, A. et al. The LINK-A lncRNA activates normoxic HIF1alpha signalling in triple-negative breast cancer. Nat Cell Biol 18, 213-224, doi:10.1038/ncb3295 (2016).
16 Sang, L. J. et al. LncRNA CamK-A Regulates Ca(2+)-Signaling-Mediated Tumor Microenvironment Remodeling. Mol Cell 72, 71-83 e77, doi:10.1016/j.molcel.2018.08.014 (2018).
17 Ma, Y., Zhang, J., Wen, L. & Lin, A. Membrane-lipid associated lncRNA: A new regulator in cancer signaling. Cancer Lett 419, 27-29, doi:10.1016/j.canlet.2018.01.008 (2018).
18 Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat Biotechnol 37, 1287-1293, doi:10.1038/s41587-019-0249-1 (2019).
19 Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A. & Singer, R. H. Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nature Methods 10, 119-121, doi:DOI 10.1038/nmeth.2305 (2013).
20 Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090, doi:10.1126/science.aaa6090 (2015).
21 Mercer, T. R. et al. The human mitochondrial transcriptome. Cell 146, 645-658, doi:10.1016/j.cell.2011.06.051 (2011).
22 Kino, T., Hurt, D. E., Ichijo, T., Nader, N. & Chrousos, G. P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3, ra8, doi:10.1126/scisignal.2000568 (2010).
23 Patel, N., Murr, M., Lui, A., Shi, Y. & Cai, J. OR01-6 LncRNA GAS5 Directed Therapeutic Increases Insulin Receptor Expression in Adipocytes. Journal of the Endocrine Society 3, doi:10.1210/js.2019-OR01-6 (2019).
24 Zhao, H. et al. Lowly-expressed lncRNA GAS5 facilitates progression of ovarian cancer through targeting miR-196-5p and thereby regulating HOXA5. Gynecol Oncol 151, 345-355, doi:10.1016/j.ygyno.2018.08.032 (2018).
25 Yoshida, H. ER stress and diseases. FEBS J 274, 630-658, doi:10.1111/j.1742-4658.2007.05639.x (2007).
26 Bethune, J., Jansen, R. P., Feldbrugge, M. & Zarnack, K. Membrane-Associated RNA-Binding Proteins Orchestrate Organelle-Coupled Translation. Trends Cell Biol 29, 178-188, doi:10.1016/j.tcb.2018.10.005 (2019).
27 Fazal, F. M. et al. Atlas of Subcellular RNA Localization Revealed by APEX-Seq. Cell 178, 473-490 e426, doi:10.1016/j.cell.2019.05.027 (2019).
28 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
29 Weinberg, S. E. & Chandel, N. S. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11, 9-15, doi:10.1038/nchembio.1712 (2015).
30 Xing, Z. et al. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell 159, 1110-1125, doi:10.1016/j.cell.2014.10.013 (2014).
31 Nelson, D. L., Cox, M. M. & Lehninger, A. L. Lehninger principles of biochemistry. Seventh edition. edn, (W.H. Freeman and Company ;
Macmillan Higher Education, 2017).
32 Lv, L. et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell 42, 719-730, doi:10.1016/j.molcel.2011.04.025 (2011).
33 Someya, S. et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell 143, 802-812, doi:10.1016/j.cell.2010.10.002 (2010).
34 Zhao, S. et al. Regulation of cellular metabolism by protein lysine acetylation. Science 327, 1000-1004, doi:10.1126/science.1179689 (2010).
35 Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033, doi:10.1126/science.1160809 (2009).
36 Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F. & Williams, G. T. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28, 195-208, doi:10.1038/onc.2008.373 (2009).
37 Graham, J. M. Biological centrifugation. (Bios, 2001).
38 Work, T. S. & Work, E. Laboratory techniques in biochemistry and molecular biology. (North-Holland Pub. Co., 1969).
39 Kaewsapsak, P., Shechner, D. M., Mallard, W., Rinn, J. L. & Ting, A. Y. Live-cell mapping of organelle-associated RNAs via proximity biotinylation combined with protein-RNA crosslinking. Elife 6, doi:10.7554/eLife.29224 (2017).
40 Chen, W. W., Freinkman, E., Wang, T., Birsoy, K. & Sabatini, D. M. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell 166, 1324-1337 e1311, doi:10.1016/j.cell.2016.07.040 (2016).
41 Ryan, D. G. et al. Coupling Krebs cycle metabolites to signalling in immunity and cancer. Nat Metab 1, 16-33, doi:10.1038/s42255-018-0014-7 (2019).
42 Schneider, C., King, R. M. & Philipson, L. Genes Specifically Expressed at Growth Arrest of Mammalian-Cells. Cell 54, 787-793, doi:Doi 10.1016/S0092-8674(88)91065-3 (1988).
43 Yu, X. & Li, Z. Long non-coding RNA growth arrest-specific transcript 5 in tumor biology (Review). Oncol Lett 10, 1953-1958, doi:10.3892/ol.2015.3553 (2015).
44 Wang, T. et al. O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat Cell Biol 19, 833-843, doi:10.1038/ncb3562 (2017).
45 Wang, Y. et al. KAT2A coupled with the alpha-KGDH complex acts as a histone H3 succinyltransferase. Nature 552, 273-277, doi:10.1038/nature25003 (2017).
46 Zhang, X. C. et al. YY1/LncRNA GAS5 complex aggravates cerebral ischemia/reperfusion injury through enhancing neuronal glycolysis. Neuropharmacology 158, 107682, doi:10.1016/j.neuropharm.2019.107682 (2019).
47 Xiao, Z., Dai, Z. & Locasale, J. W. Metabolic landscape of the tumor microenvironment at single cell resolution. Nat Commun 10, 3763, doi:10.1038/s41467-019-11738-0 (2019).
48 Etchegaray, J. P. & Mostoslavsky, R. Interplay between Metabolism and Epigenetics: A Nuclear Adaptation to Environmental Changes. Mol Cell 62, 695-711, doi:10.1016/j.molcel.2016.05.029 (2016).
49 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T. & Salzberg, S. L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11, 1650-1667, doi:10.1038/nprot.2016.095 (2016).
50 Sun, L. et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41, e166, doi:10.1093/nar/gkt646 (2013).
51 Kong, L. et al. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35, W345-349, doi:10.1093/nar/gkm391 (2007).
52 The Gene Ontology, C. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47, D330-D338, doi:10.1093/nar/gky1055 (2019).
53 Kanehisa, M. et al. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34, D354-357, doi:10.1093/nar/gkj102 (2006).
54 Li, C. et al. A ROR1-HER3-lncRNA signalling axis modulates the Hippo-YAP pathway to regulate bone metastasis. Nat Cell Biol 19, 106-119, doi:10.1038/ncb3464 (2017).