1.Weisz, J. B., N. Lindquist, and C. S. Martens, Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia, 2008. 155(2): p. 367–76.
2.Maldonado, M., M. Ribes, and F. C. van Duyl, Nutrient Fluxes through Sponges: Biology, Budgets, and Ecological Implications. Advances in Sponge Science: Physiology, Chemical and Microbial Diversity, Biotechnology, 2012. 62: p. 113–182.
3.Biggerstaff, A., et al., Metabolic responses of a phototrophic sponge to sedimentation supports transitions to sponge-dominated reefs. Sci Rep, 2017. 7(1): p. 2725.
4.Taylor, M. W., et al., Soaking it up: the complex lives of marine sponges and their microbial associates. ISME J, 2007. 1(3): p. 187–90.
5.Pita, L., et al., The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome, 2018 Mar 9. 6(1): p. Article number: 46.
6.Webster, N. S. and T. Thomas, The Sponge Hologenome. MBio, 2016. 7(2): p. e00135–16.
7.Bercerro MA, P. V., Effects of depth and light on secondary metabolites and cyanobacterial symbionts of the sponge Dysidea granulosa. Mar Ecol Prog Ser, 2004. 280: p. 115–128.
8.Thacker, R. W., Impacts of shading on sponge-Cyanobacteria symbioses: A comparison between host-specific and generalist associations. Integrative and Comparative Biology, 2005. 45(2): p. 369–376.
9.Hinde, R., F. Pironet, and M. A. Borowitzka, Isolation of Oscillatoria-Spongeliae, the Filamentous Cyanobacterial Symbiont of the Marine Sponge Dysidea-Herbacea. Marine Biology, 1994. 119(1): p. 99–104.
10.Usher, K. M., The ecology and phylogeny of cyanobacterial symbionts in sponges. Marine Ecology-an Evolutionary Perspective, 2008. 29(2): p. 178–192.
11.Freeman, C. J., et al., Quality or quantity: is nutrient transfer driven more by symbiont identity and productivity than by symbiont abundance? ISME J, 2013. 7(6): p. 1116–25.
12.Berthold, R. J., M. A. Borowitzka, and M. A. Mackay, The Ultrastructure of Oscillatoria-Spongeliae, the Blue-Green-Algal Endosymbiont of the Sponge Dysidea-Herbacea. Phycologia, 1982. 21(3): p. 327–335.
13.Schorn, M. A., et al., Comparative Genomics of Cyanobacterial Symbionts Reveals Distinct, Specialized Metabolism in Tropical Dysideidae Sponges. MBio, 2019. 10(3): p. e00821–19.
14.Ridley, C. P., D. John Faulkner, and M. G. Haygood, Investigation of Oscillatoria spongeliae-dominated bacterial communities in four dictyoceratid sponges. Appl Environ Microbiol, 2005. 71(11): p. 7366–75.
15.Ridley, C. P., et al., Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbiont, Oscillatoria spongeliae. Chem Biol, 2005. 12(3): p. 397–406.
16.Agarwal, V., et al., Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat Chem Biol, 2017. 13(5): p. 537–543.
17.Unson, M. D., N. D. Holland, and D. J. Faulkner, A Brominated Secondary Metabolite Synthesized by the Cyanobacterial Symbiont of a Marine Sponge and Accumulation of the Crystalline Metabolite in the Sponge Tissue. Marine Biology, 1994. 119(1): p. 1–11.
18.Hanif, N., et al., Polybrominated diphenyl ethers from the Indonesian sponge Lamellodysidea herbacea. J Nat Prod, 2007. 70(3): p. 432–5.
19.Liu, H., et al., Polybrominated Diphenyl Ethers: Structure Determination and Trends in Antibacterial Activity. J Nat Prod, 2016. 79(7): p. 1872–6.
20.Sharma, G. M. and B. Vig, Studies on.Antimicrobial Substances of Sponges. VI. Structures of 2 Antibacterial Substances Isolated from Marine Sponge Dysidea-Herbacea. Tetrahedron Letters, 1972(17): p. 1715–1718.
21.Sun, S., et al., Polybrominated diphenyl ethers with potent and broad spectrum antimicrobial activity from the marine sponge Dysidea. Bioorg Med Chem Lett, 2015. 25(10): p. 2181–3.
22.Becerro, M. A., et al., Biogeography of sponge chemical ecology: comparisons of tropical and temperate defenses. Oecologia, 2003. 135(1): p. 91–101.
23.Bowers, R. M., et al., Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol, 2017. 35(8): p. 725–731.
24.Parks, D. H., et al., CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 2015. 25(7): p. 1043–55.
25.Rodriguez-R, L. M., and Konstantinos T. Konstantinidis, Bypassing Cultivation To Identify Bacterial Species. Microbe, 2014. 9(3): p. 111–8.
26.Rodriguez-R, L. and K. Konstantinidis, The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints, 2016. 4: p. e1900v1.
27.Lewin, R. A. and L. Cheng, Prochloron: a microbial enigma. 1989, New York: Chapman and Hall. xiii, 129 p., 26 p. of plates.
28.Cheng, L. and R. A. Lewin, Prochloron on Synaptula. Bulletin of Marine Science, 1984. 35(1): p. 95–98.
29.Parry, D. L., Prochloron on the Sponge Aplysilla Sp. Bulletin of Marine Science, 1986. 38(2): p. 388–390.
30.Thomas, T., et al., Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun, 2016. 7: p. 11870.
31.Moitinho-Silva, L., et al., The sponge microbiome project. Gigascience, 2017. 6(10): p. 1–7.
32.Alain, K., et al., Ekhidna lutea gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from the South East Pacific Ocean. Int J Syst Evol Microbiol, 2010. 60(Pt 12): p. 2972–8.
33.Liu, Y., et al., Nioella sediminis sp. nov., isolated from surface sediment and emended description of the genus Nioella. Int J Syst Evol Microbiol, 2017. 67(5): p. 1271–1274.
34.Rajasabapathy, R., et al., Nioella nitratireducens gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from Azorean Island. Antonie Van Leeuwenhoek, 2015. 107(2): p. 589–95.
35.Wisniewski-Dye, F., et al., Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet, 2011. 7(12): p. e1002430.
36.Alain, K., et al., Hellea balneolensis gen. nov., sp. nov., a prosthecate alphaproteobacterium from the Mediterranean Sea. Int J Syst Evol Microbiol, 2008. 58(Pt 11): p. 2511–9.
37.Hahn, M. W., et al., Silvanigrella aquatica gen. nov., sp. nov., isolated from a freshwater lake, description of Silvanigrellaceae fam. nov. and Silvanigrellales ord. nov., reclassification of the order Bdellovibrionales in the class Oligoflexia, reclassification of the families Bacteriovoracaceae and Halobacteriovoraceae in the new order Bacteriovoracales ord. nov., and reclassification of the family Pseudobacteriovoracaceae in the order Oligoflexales. Int J Syst Evol Microbiol, 2017. 67(8): p. 2555–2568.
38.Yarza, P., et al., Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol, 2014. 12(9): p. 635–45.
39.Martinez-Gomez, N. C., S. Nguyen, and M. E. Lidstrom, Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1. J Bacteriol, 2013. 195(10): p. 2359–67.
40.Gurung, J. M., et al., Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion. Front Cell Infect Microbiol, 2018. 8: p. 80.
41.Nazir, R., et al., The Ecological Role of Type Three Secretion Systems in the Interaction of Bacteria with Fungi in Soil and Related Habitats Is Diverse and Context-Dependent. Front Microbiol, 2017. 8: p. 38.
42.Klasson, L. and S. G. Andersson, Evolution of minimal-gene-sets in host-dependent bacteria. Trends Microbiol, 2004. 12(1): p. 37–43.
43.Moran, N. A., J. P. McCutcheon, and A. Nakabachi, Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet, 2008. 42: p. 165–90.
44.Moya, A., et al., Learning how to live together: genomic insights into prokaryote-animal symbioses. Nat Rev Genet, 2008. 9(3): p. 218–29.
45.Voget, S., et al., Adaptation of an abundant Roseobacter RCA organism to pelagic systems revealed by genomic and transcriptomic analyses. ISME J, 2015. 9(2): p. 371–84.
46.Gonzalez, J. M., et al., Genomics of the proteorhodopsin-containing marine flavobacterium Dokdonia sp. strain MED134. Appl Environ Microbiol, 2011. 77(24): p. 8676–86.
47.McBride, M. J. and D. Nakane, Flavobacterium gliding motility and the type IX secretion system. Curr Opin Microbiol, 2015. 28: p. 72–7.
48.Johnston, J. J., A. Shrivastava, and M. J. McBride, Untangling Flavobacterium johnsoniae Gliding Motility and Protein Secretion. J Bacteriol, 2018. 200(2).
49.Li, N., et al., The Type IX Secretion System Is Required for Virulence of the Fish Pathogen Flavobacterium columnare. Appl Environ Microbiol, 2017. 83(23).
50.Veith, P. D., et al., Type IX secretion: the generation of bacterial cell surface coatings involved in virulence, gliding motility and the degradation of complex biopolymers. Mol Microbiol, 2017. 106(1): p. 35–53.
51.Lasica, A.M., et al., The Type IX Secretion System (T9SS): Highlights and Recent Insights into Its Structure and Function. Front Cell Infect Microbiol, 2017. 7: p. 215.
52.Fraiberg, M., et al., Discovery and Characterization of Cadherin Domains in Saccharophagus degradans 2–40. Journal of Bacteriology, 2010. 192(4): p. 1066–1074.
53.Abraham, W. and M. Rohde, The Family Hyphomonadaceae, in The Prokaryotes—Alphaproteobacteria and Betaproteobacteria, Rosenberg E, et al., Editors. 2014, Springer: Berlin.
54.Tully, B. J., E. D. Graham, and J. F. Heidelberg, The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data, 2018. 5: p. 170203.
55.Sockett, R. E., Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol, 2009. 63: p. 523–39.
56.Yao, J. and C. O. Rock, How bacterial pathogens eat host lipids: implications for the development of fatty acid synthesis therapeutics. J Biol Chem, 2015. 290(10): p. 5940–6.
57.Pascelli, C., et al., Morphological characterization of virus-like particles in coral reef sponges. PeerJ, 2018. 6: p. e5625.
58.Roux, S., et al., VirSorter: mining viral signal from microbial genomic data. PeerJ, 2015. 3: p. e985.
59.Brussow, H., C. Canchaya, and W. D. Hardt, Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev, 2004. 68(3): p. 560–602, table of contents.
60.Seweryn, P., et al., Structural insights into the bacterial carbon-phosphorus lyase machinery. Nature, 2015. 525(7567): p. 68–72.
61.Martinez, A., et al., Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol, 2013. 4: p. 340.
62.Blin, K., et al., antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res, 2019. 47(W1): p. W81-W87.
63.Donia, M. S., et al., Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc Natl Acad Sci U S A, 2011. 108(51): p. E1423–32.
64.Schmidt, E. W., et al., Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc Natl Acad Sci U S A, 2005. 102(20): p. 7315–20.
65.Enisoglu-Atalay, V., et al., Chemical and molecular characterization of metabolites from Flavobacterium sp. PLoS One, 2018. 13(10): p. e0205817.
66.Moore, B. S., et al., Plant-like biosynthetic pathways in bacteria: from benzoic acid to chalcone. J Nat Prod, 2002. 65(12): p. 1956–62.
67.Xiang, L. and B. S. Moore, Biochemical characterization of a prokaryotic phenylalanine ammonia lyase. J Bacteriol, 2005. 187(12): p. 4286–9.
68.Reiter, S., et al., Characterization of an orphan type III polyketide synthase conserved in uncultivated ‘Entotheonella’ sponge symbionts Chembiochem, 2019 Aug 20 (Epub ahead of print).
69.Agarwal, V., et al., Complexity of Naturally Produced Polybrominated Diphenyl Ethers Revealed via Mass Spectrometry. Environmental Science & Technology, 2015. 49(3): p. 1339–1346.
70.Finn, R. D., et al., The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res, 2016. 44(D1): p. D279–85.
71.Neubauer, P. R., et al., A flavin-dependent halogenase from metagenomic analysis prefers bromination over chlorination. PLoS One, 2018. 13(5): p. e0196797.
72.Agarwal, V. and B. S. Moore, Enzymatic synthesis of polybrominated dioxins from the marine environment. ACS Chem Biol, 2014. 9(9): p. 1980–4.
73.Fu, X. O., et al., Enzyme-Inhibitors - New and Known Polybrominated Phenols and Diphenyl Ethers from 4 Indo-Pacific Dysidea Sponges. Journal of Natural Products, 1995. 58(9): p. 1384–1391.
74.Miyazaki, R., et al., Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds. Environ Microbiol, 2015. 17(1): p. 91–104.
75.Schwien, U., et al., Degradation of Chlorosubstituted Aromatic-Compounds by Pseudomonas Sp Strain-B13 - Fate of 3,5-Dichlorocatechol. Archives of Microbiology, 1988. 150(1): p. 78–84.
76.Seo, S. H. and S. D. Lee, Altererythrobacter marensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol, 2010. 60(Pt 2): p. 307–11.
77.Phale, P. S., B. A. Shah, and H. Malhotra, Variability in Assembly of Degradation Operons for Naphthalene and its derivative, Carbaryl, Suggests Mobilization through Horizontal Gene Transfer. Genes (Basel), 2019. 10(8).
78.Hentschel, U., et al., Microbial diversity of marine sponges. Prog Mol Subcell Biol, 2003. 37: p. 59–88.
79.Huang, I. S. and P. V. Zimba, Cyanobacterial bioactive metabolites-A review of their chemistry and biology. Harmful Algae, 2019. 86: p. 139–209.
80.Thacker RW, S. S., Host specificity of the symbiotic cyanobacterium Oscillatoria spongeliae in marine sponges, Dysidea spp. Marine Biology, 2003. 142: p. 643–648.
81.Parada, A. E., D. M. Needham, and J. A. Fuhrman, Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol, 2016. 18(5): p. 1403–14.
82.Callahan, B. J., et al., DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods, 2016. 13(7): p. 581–3.
83.Bolyen, E., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019. 37(8): p. 852–857.
84.Pruesse, E., J. Peplies, and F. O. Glockner, SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics, 2012. 28(14): p. 1823–9.
85.Bolger, A.M., M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014. 30(15): p. 2114–20.
86.Peng, Y., et al., IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 2012. 28(11): p. 1420–8.
87.Langmead, B. and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods, 2012. 9(4): p. 357–9.
88.Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078–9.
89.Podell, S. DarkHorse2 GitHub Repository. 2017; Available from: https://github.com/spodell/Darkhorse2.
90.Podell, S. and T. Gaasterland, DarkHorse: a method for genome-wide prediction of horizontal gene transfer. Genome Biol, 2007. 8(2): p. R16.
91.Podell, S., et al., Assembly-driven community genomics of a hypersaline microbial ecosystem. PLoS One, 2013. 8(4): p. e61692.
92.Myers, E. W., et al., A whole-genome assembly of Drosophila. Science, 2000. 287(5461): p. 2196–204.
93.Koren, S., et al., Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res, 2017. 27(5): p. 722–736.
94.Quast, C., et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 2013. 41(Database issue): p. D590–6.
95.Price, M. N., P. S. Dehal, and A. P. Arkin, FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One, 2010. 5(3): p. e9490.
96.Rambaut, A. FigTree, version 1.4.3. In: Molecular evolytion phylogenetics and epidemiology. 2016; Available from: http://tree.bio.ed.ac.uk/software/figtree/ Accessed October, 2018.
97.Segata, N., et al., PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat Commun, 2013. 4: p. 2304.
98.Markowitz, V. M., et al., IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res, 2012. 40(Database issue): p. D123–9.
99.Bland, C., et al., CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinformatics, 2007. 8: p. 209.
100.Haft, D. H., et al., TIGRFAMs and Genome Properties in 2013. Nucleic Acids Res, 2013. 41(Database issue): p. D387–95.
101.Chen, I. A., et al., IMG/M: integrated genome and metagenome comparative data analysis system. Nucleic Acids Res, 2017. 45(D1): p. D507-D516.
102.Dewoody, R. S., P.M. Merritt, and M. M. Marketon, Regulation of the Yersinia type III secretion system: traffic control. Front Cell Infect Microbiol, 2013. 3: p. 4.
103.Agarwal, V., et al., Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat Chem Biol, 2014. 10(8): p. 640–7.