A kinetic theory formulation of the pulsational mode of gravitational collapse (PMGC) in a complex unmagnetized self-gravitating partially ionized dense molecular cloud (DMC) is proposed. Applying a linear normal mode analysis, a quintic linear dispersion relation with a unique set of multi-parametric plasma-dependent coefficients is obtained. The reliability of the calculation scheme is validated in light of the various predictions available in the literature. It is then numerically analyzed in the parametric windows of judicious realistic input values. Our results indicate that the dust mass, equilibrium electron density, and equilibrium ion density act as destabilizing agencies to the PMGC evolution. In contrast, the dust charge number, equilibrium dust density, and dust temperature act as stabilizing agencies. The oscillatory and propagatory features of the PMGC are illustratively explained and comparatively validated in accordance with the observed astrophysical scenarios. This paper ends up with a brief highlight of the non-trivial implications and applications of the results actualizable in the self-gravitational collapse mechanism leading to varied structure formation processes in the mysterious astrocosmic universe.