[1] W. Guo, L. Wu, J. Yu, L. Zeng, S. Sun, J. Li, S. Wu, H. Lin, C. Wang, Effect of ZrB2 content on phase assemblage and mechanical properties of Si3N4–ZrB2 ceramics prepared at low temperature, J Am Ceram Soc 101(11) (2018) 4870-4875.
[2] W. Liu, W. Tong, X. Lu, S. Wu, Effects of different types of rare earth oxide additives on the properties of silicon nitride ceramic substrates, Ceram Int 45(9) (2019) 12436-12442.
[3] Z. Chlup, D. Salamon, Properties of porous multi-layered free-standing ceramic microchannels, Scripta Mater 63(6) (2010) 597-600.
[4] X. Shao, Z. Wang, S. Xu, K. Xie, X. Hu, D. Dong, G. Parkinson, C.-Z. Li, Microchannel structure of ceramic membranes for oxygen separation, J Eur Ceram Soc 36(13) (2016) 3193-3199.
[5] Y. Hong, J. Lei, M. Heim, Y. Song, L. Yuan, S. Mu, R.K. Bordia, H. Xiao, J. Tong, F. Peng, Fabricating ceramics with embedded microchannels using an integrated additive manufacturing and laser machining method, J Am Ceram Soc 102(3) (2019) 1071-1082.
[6] Y. Li, M. Wang, H. Wu, F. He, Y. Chen, S. Wu, Cure behavior of colorful ZrO2 suspensions during Digital light processing (DLP) based stereolithography process, J Eur Ceram Soc 39(15) (2019) 4921-4927.
[7] H. Xing, B. Zou, X. Liu, X. Wang, C. Huang, Y. Hu, Fabrication strategy of complicated Al2O3-Si3N4 functionally graded materials by stereolithography 3D printing, J Eur Ceram Soc 40(15) (2020) 5797-5809.
[8] G. Nie, Y. Li, P. Sheng, F. Zuo, H. Wu, L. Liu, X. Deng, Y. Bao, S. Wu, Microstructure refinement-homogenization and flexural strength improvement of Al2O3 ceramics fabricated by DLP-stereolithography integrated with chemical precipitation coating process, Journal of Advanced Ceramics 10(4) (2021) 790-808.
[9] C. Feng, K. Zhang, R. He, G. Ding, M. Xia, X. Jin, C. Xie, Additive manufacturing of hydroxyapatite bioceramic scaffolds: Dispersion, digital light processing, sintering, mechanical properties, and biocompatibility, Journal of Advanced Ceramics 9(3) (2020) 360-373.
[10] G. Liu, Y. Zhao, G. Wu, J. Lu, Origami and 4D printing of elastomer-derived ceramic structures, Science Advances 4(8) (2018) eaat0641.
[11] Q. Liu, H. Wu, M.J. Paul, P. He, Z. Peng, B. Gludovatz, J.J. Kruzic, C.H. Wang, X. Li, Machine-learning assisted laser powder bed fusion process optimization for AlSi10Mg: New microstructure description indices and fracture mechanisms, Acta Mater 201 (2020) 316-328.
[12] L. Yanhui, C. Yong, W. Minglang, L. Lian, W. Haidong, H. Fupo, W. Shanghua, The cure performance of modified ZrO2 coated by paraffin via projection based stereolithography, Ceram Int 45(3) (2019) 4084-4088.
[13] Z. Lu, J. Cao, Z. Song, D. Li, B. Lu, Research progress of ceramic matrix composite parts based on additive manufacturing technology, Virtual and Physical Prototyping 14(4) (2019) 333-348.
[14] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: A review, J Eur Ceram Soc 39(4) (2019) 661-687.
[15] R. He, W. Liu, Z. Wu, D. An, M. Huang, H. Wu, Q. Jiang, X. Ji, S. Wu, Z. Xie, Fabrication of complex-shaped zirconia ceramic parts via a DLP- stereolithography-based 3D printing method, Ceram Int 44(3) (2018) 3412-3416.
[16] Y. Chen, X. Bao, C.-M. Wong, J. Cheng, H. Wu, H. Song, X. Ji, S. Wu, PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application, Ceram Int 44(18) (2018) 22725-22730.
[17] R. Chen, Q. Lian, X. He, J. Wang, D. Li, A stereolithographic diamond-mixed resin slurry for complex SiC ceramic structures, J Eur Ceram Soc 41(7) (2021) 3991-3999.
[18] Y. Yao, W. Qin, B. Xing, N. Sha, T. Jiao, Z. Zhao, High performance hydroxyapatite ceramics and a triply periodic minimum surface structure fabricated by digital light processing 3D printing, Journal of Advanced Ceramics 10(1) (2021) 39-48.
[19] W. Liu, H. Wu, Z. Tian, Y. Li, Z. Zhao, M. Huang, X. Deng, Z. Xie, S. Wu, 3D printing of dense structural ceramic microcomponents with low cost: Tailoring the sintering kinetics and the microstructure evolution, J Am Ceram Soc 102(5) (2019) 2257-2262.
[20] W. Duan, S. Li, G. Wang, R. Dou, L. Wang, Y. Zhang, H. Li, H. Tan, Thermal conductivities and mechanical properties of AlN ceramics fabricated by three dimensional printing, J Eur Ceram Soc 40(10) (2020) 3535-3540.
[21] H. Wu, W. Liu, R. He, Z. Wu, Q. Jiang, X. Song, Y. Chen, L. Cheng, S. Wu, Fabrication of dense zirconia-toughened alumina ceramics through a stereolithography-based additive manufacturing, Ceram Int 43(1, Part B) (2017) 968-972.
[22] R. Huang, Q. Jiang, H. Wu, Y. Li, W. Liu, X. Lu, S. Wu, Fabrication of complex shaped ceramic parts with surface-oxidized Si3N4 powder via digital light processing based stereolithography method, Ceram Int 45(4) (2019) 5158-5162.
[23] H. Li, Y. Liu, Y. Liu, Q. Zeng, J. Liang, 3D printed ceramic slurries with improved solid content through optimization of alumina powder and coupling agent, Journal of Manufacturing Processes 64 (2021) 1206-1213.
[24] Y. Liu, L. Zhan, Y. He, J. Zhang, J. Hu, L. Cheng, Q. Wu, S. Liu, Stereolithographical fabrication of dense Si3N4 ceramics by slurry optimization and pressure sintering, Ceram Int 46(2) (2020) 2063-2071.
[25] Y. Liu, L. Cheng, H. Li, Q. Li, Y. Shi, F. Liu, Q. Wu, S. Liu, Formation mechanism of stereolithography of Si3N4 slurry using silane coupling agent as modifier and dispersant, Ceram Int 46(10, Part A) (2020) 14583-14590.
[26] Y. Liu, L. Zhan, L. Wen, L. Cheng, Y. He, B. Xu, Q. Wu, S. Liu, Effects of particle size and color on photocuring performance of Si3N4 ceramic slurry by stereolithography, J Eur Ceram Soc 41(4) (2021) 2386-2394.
[27] Y. Li, H.N. Kim, H. Wu, M.J. Kim, J.W. Ko, Y. Park, Z. Huang, H.D. Kim, Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon, J Eur Ceram Soc 39(2) (2019) 157-164.
[28] G. Ding, R. He, K. Zhang, C. Xie, M. Wang, Y. Yang, D. Fang, Stereolithography-based additive manufacturing of gray-colored SiC ceramic green body, J Am Ceram Soc 102(12) (2019) 7198-7209.
[29] K. Zhang, C. Xie, G. Wang, R. He, G. Ding, M. Wang, D. Dai, D. Fang, High solid loading, low viscosity photosensitive Al2O3 slurry for stereolithography based additive manufacturing, Ceram Int 45(1) (2019) 203-208.
[30] A. Johansen, T. Schæfer, Effects of interactions between powder particle size and binder viscosity on agglomerate growth mechanisms in a high shear mixer, European Journal of Pharmaceutical Sciences 12(3) (2001) 297-309.
[31] Y. Zhang, S. Li, Y. Zhao, W. Duan, B. Liu, T. Wang, G. Wang, Digital light processing 3D printing of AlSi10Mg powder modified by surface coating, Additive Manufacturing 39 (2021) 101897.
[32] S.P. Gentry, J.W. Halloran, Depth and width of cured lines in photopolymerizable ceramic suspensions, J Eur Ceram Soc 33(10) (2013) 1981-1988.
[33] S.P. Gentry, J.W. Halloran, Absorption effects in photopolymerized ceramic suspensions, J Eur Ceram Soc 33(10) (2013) 1989-1994.
[34] H. Xing, B. Zou, Q. Lai, C. Huang, Q. Chen, X. Fu, Z. Shi, Preparation and characterization of UV curable Al2O3 suspensions applying for stereolithography 3D printing ceramic microcomponent, Powder Technol 338 (2018) 153-161.
[35] D.K. Yi, S.T. Selvan, S.S. Lee, G.C. Papaefthymiou, D. Kundaliya, J.Y. Ying, Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots, J. Am. Chem. Soc. 127(14) (2005) 4990-4991.
[36] H. Shi, F. Liu, L. Yang, E. Han, Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2, Progress in Organic Coatings 62(4) (2008) 359-368.
[37] Y. Zhu, H. Da, X. Yang, Y. Hu, Preparation and characterization of core-shell monodispersed magnetic silica microspheres, Colloids and Surfaces A: Physicochemical and Engineering Aspects 231(1) (2003) 123-129.
[38] P. Yang, S. Wu, H. Wu, D. Lu, W. Zou, L. Chu, Y. Shao, S. Wu, Prediction of bending strength of Si3N4 using machine learning, Ceram Int (2021).
[39] W. Wang, D. Yao, H. Liang, Y. Xia, K. Zuo, J. Yin, Y. Zeng, Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics, J Eur Ceram Soc 40(15) (2020) 5316-5323.
[40] Y. Duan, N. Liu, J. Zhang, H. Zhang, X. Li, Cost effective preparation of Si3N4 ceramics with improved thermal conductivity and mechanical properties, J Eur Ceram Soc 40(2) (2020) 298-304.