The present study analyses the variations in the ionospheric total electron content (TEC) prior to and during the 2015 Gorkha Earthquake in Nepal (Mw = 7.8) on 25 April 2015, utilising data from the widely distributed Global Positioning System (GPS) network. This study aimed to determine the association between ionospheric TEC anomalies and the occurrence of earthquakes. The finding shows that anomalous TEC changes occurred several days to a few hours prior to the major impending events. The results reveal that deviations in vertical total electron content (VTEC) at distant locations from the epicentre are less than those observed at the epicentre, implying that variation in ionospheric VTEC is nearly inversely proportional to the distance of GPS stations from the epicentre. In view of the solar-terrestrial environment, the pre-earthquake ionospheric anomalies could be associated with the 2015 Gorkha Earthquake. The VTEC anomaly was identified when it crosses the upper bound (UB) or lower bound (LB). The outcomes additionally show that TEC variation was dominant in the vicinity of the earthquake epicentre. We also observed contrast in TEC throughout the globe using global ionospheric maps at regular 2-hour UT intervals, the day before, during and after the earthquake. As a result, we observed that areas heavily influenced by TEC were found to be transposed from eastern sectors to western sectors through the equatorial plane. TEC Maps indicate that most of the Indian regions, Northern China, Nepal, Bhutan, were heavily affected, indicating the earthquake's onset influence on the day of the event. Furthermore, we examined the cross-correlation of the SGOC station's TEC with the rest of the stations and discovered that the correlation increased gradually with epicentral distance from the surrounding stations, which was an intriguing result.