1 Wood, J. L. N., Newton, J. R., Chanter, N. & Mumford, J. A. Inflammatory airway disease, nasal discharge and respiratory infections in young British racehorses. Equine veterinary journal 37, 236-242 (2005).
2 Allen, K. J., Tremaine, W. H. & Franklin, S. H. Prevalence of inflammatory airway disease in national hunt horses referred for investigation of poor athletic performance. Equine veterinary journal. Supplement, 529-534, doi:10.1111/j.2042-3306.2006.tb05599.x (2006).
3 Ivester, K. M., Couetil, L. L. & Moore, G. E. An observational study of environmental exposures, airway cytology, and performance in racing thoroughbreds. J Vet Intern Med 32, 1754-1762, doi:10.1111/jvim.15226 (2018).
4 Couetil, L. et al. Equine Asthma: Current Understanding and Future Directions. Front Vet Sci 7, 450, doi:10.3389/fvets.2020.00450 (2020).
5 Cardwell, J. M., Wood, J. L., Smith, K. C. & Newton, J. R. Descriptive results from a longitudinal study of airway inflammation in British National Hunt racehorses. Equine veterinary journal 43, 750-755, doi:10.1111/j.2042-3306.2010.00338.x (2011).
6 Cardwell, J. M., Smith, K. C., Wood, J. L. & Newton, J. R. Infectious risk factors and clinical indicators for tracheal mucus in British National Hunt racehorses. Equine veterinary journal 46, 150-155, doi:10.1111/evj.12109 (2014).
7 Couetil, L. L. et al. Inflammatory Airway Disease of Horses--Revised Consensus Statement. 30, 503-515, doi:10.1111/jvim.13824 (2016).
8 Nieman, D. C. & Wentz, L. M. The compelling link between physical activity and the body's defense system. Journal of sport and health science 8, 201-217, doi:10.1016/j.jshs.2018.09.009 (2019).
9 Simpson, R. J. et al. Can exercise affect immune function to increase susceptibility to infection? Exerc Immunol Rev 26, 8-22 (2020).
10 Frellstedt, L. et al. Training Modifies Innate Immune Responses in Blood Monocytes and in Pulmonary Alveolar Macrophages. American Journal of Respiratory Cell and Molecular Biology 51, 135-142, doi:10.1165/rcmb.2013-0341OC (2014).
11 Karagianni, A. E. et al. The Effect of Race Training on the Basal Gene Expression of Alveolar Macrophages Derived From Standardbred Racehorses. Journal of Equine Veterinary Science 75, 48-54, doi:https://doi.org/10.1016/j.jevs.2019.01.010 (2019).
12 Raidal, S. L., Love, D. N., Bailey, G. D. & Rose, R. J. The effect of high intensity exercise on the functional capacity of equine pulmonary alveolar macrophages and BAL-derived lymphocytes. Research in Veterinary Science 68, 249-253 (2000).
13 Hinchcliff, K. W. et al. Exercise induced pulmonary hemorrhage in horses: American College of Veterinary Internal Medicine consensus statement. Journal of veterinary internal medicine 29, 743-758, doi:10.1111/jvim.12593 (2015).
14 Walsh, N. P. et al. Position Statement Part one: Immune function and exercise. Exercise Immunology Review 17, 6-63 (2011).
15 Hodgson, J. L. Proceedings of the 9th International Congress of World Equine Veterinary Association. (2006).
16 Karagianni, A. E. et al. Application across species of a one health approach to liquid sample handling for respiratory based -omics analysis. Sci Rep 11, 14292, doi:10.1038/s41598-021-93839-9 (2021).
17 Haider, S. & Pal, R. Integrated Analysis of Transcriptomic and Proteomic Data. Current Genomics 14, 91-110 (2013).
18 Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols 4, 44-57, doi:10.1038/nprot.2008.211 (2009).
19 Kramer, A., Green, J., Pollard, J., Jr. & Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics (Oxford, England) 30, 523-530, doi:10.1093/bioinformatics/btt703 (2014).
20 Rusinova, I. et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic acids research 41, D1040-1046, doi:10.1093/nar/gks1215 (2013).
21 Shaw, A. E. et al. Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLOS Biology 15, e2004086, doi:10.1371/journal.pbio.2004086 (2017).
22 Pan, Q., Rong, L., Zhao, X. & Liang, C. Fragile X mental retardation protein restricts replication of human immunodeficiency virus type 1. Virology 387, 127-135, doi:10.1016/j.virol.2009.02.006 (2009).
23 Zhou, Z. et al. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus. Nature communications 5, 3259, doi:10.1038/ncomms4259 (2014).
24 Rossi, H. et al. Comparison of Tracheal Wash and Bronchoalveolar Lavage Cytology in 154 Horses With and Without Respiratory Signs in a Referral Hospital Over 2009−2015. Frontiers in Veterinary Science 5, doi:10.3389/fvets.2018.00061 (2018).
25 Couetil, L. L. & Thompson, C. A. Airway Diagnostics: Bronchoalveolar Lavage, Tracheal Wash, and Pleural Fluid. The Veterinary clinics of North America. Equine practice 36, 87-103, doi:10.1016/j.cveq.2019.12.006 (2020).
26 Beekman, L., Tohver, T., Dardari, R. & Leguillette, R. Evaluation of suitable reference genes for gene expression studies in bronchoalveolar lavage cells from horses with inflammatory airway disease. Bmc Molecular Biology 12, 1471-2199, doi:5
10.1186/1471-2199-12-5 (2011).
27 Beekman, L., Tohver, T. & Léguillette, R. Comparison of cytokine mRNA expression in the bronchoalveolar lavage fluid of horses with inflammatory airway disease and bronchoalveolar lavage mastocytosis or neutrophilia using REST software analysis. Journal Of Veterinary Internal Medicine / American College Of Veterinary Internal Medicine 26, 153-161, doi:10.1111/j.1939-1676.2011.00847.x (2012).
28 Bright, L. A. et al. Modeling the pasture-associated severe equine asthma bronchoalveolar lavage fluid proteome identifies molecular events mediating neutrophilic airway inflammation. Veterinary medicine (Auckland, N.Z.) 10, 43-63, doi:10.2147/vmrr.s194427 (2019).
29 Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 15, 550, doi:10.1186/s13059-014-0550-8 (2014).
30 Gonzalez, E. & Joly, S. Impact of RNA-seq attributes on false positive rates in differential expression analysis of de novo assembled transcriptomes. BMC research notes 6, 503, doi:10.1186/1756-0500-6-503 (2013).
31 Chen, G. et al. Discordant protein and mRNA expression in lung adenocarcinomas. Molecular & cellular proteomics : MCP 1, 304-313 (2002).
32 Ghazalpour, A. et al. Comparative Analysis of Proteome and Transcriptome Variation in Mouse. PLOS Genetics 7, e1001393, doi:10.1371/journal.pgen.1001393 (2011).
33 Kalbfleisch, T. S. et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun Biol 1, 197, doi:10.1038/s42003-018-0199-z (2018).
34 Tessier, L. et al. Impaired response of the bronchial epithelium to inflammation characterizes severe equine asthma. BMC genomics 18, 708, doi:10.1186/s12864-017-4107-6 (2017).
35 Gharib, S. A. et al. Induced sputum proteome in healthy subjects and asthmatic patients. Journal of Allergy and Clinical Immunology 128, 1176-1184.e1176, doi:10.1016/j.jaci.2011.07.053 (2011).
36 Zobba, R. et al. Physical, Hematological, and Biochemical Responses to Acute Intense Exercise in Polo Horses. Journal of Equine Veterinary Science 31, 542-548, doi:https://doi.org/10.1016/j.jevs.2011.03.010 (2011).
37 Arfuso, F., Giannetto, C., Fazio, F., Panzera, F. & Piccione, G. Training Program Intensity Induces an Acute Phase Response in Clinically Healthy Horses. J Equine Vet Sci 88, 102986, doi:10.1016/j.jevs.2020.102986 (2020).
38 Art, T. et al. Myeloperoxidase concentration in bronchoalveolar lavage fluid from healthy horses and those with recurrent airway obstruction. Can J Vet Res 70, 291-296 (2006).
39 Aratani, Y. Myeloperoxidase: Its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys 640, 47-52, doi:10.1016/j.abb.2018.01.004 (2018).
40 Friedrichs, K., Baldus, S. & Klinke, A. Fibrosis in Atrial Fibrillation - Role of Reactive Species and MPO. Front Physiol 3, 214, doi:10.3389/fphys.2012.00214 (2012).
41 Pepys, M. B. et al. Serum amyloid A protein (SAA) in horses: objective measurement of the acute phase response. Equine veterinary journal 21, 106-109, doi:10.1111/j.2042-3306.1989.tb02108.x (1989).
42 Hulten, C. et al. The acute phase protein serum amyloid A (SAA) as an inflammatory marker in equine influenza virus infection. Acta Vet Scand 40, 323-333 (1999).
43 Murata, H., Shimada, N. & Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis: an overview. Veterinary journal (London, England : 1997) 168, 28-40, doi:10.1016/s1090-0233(03)00119-9 (2004).
44 Hur, G. Y. & Broide, D. H. Genes and Pathways Regulating Decline in Lung Function and Airway Remodeling in Asthma. Allergy, asthma & immunology research 11, 604-621, doi:10.4168/aair.2019.11.5.604 (2019).
45 Miller, M. et al. ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma. J Immunol 192, 3475-3487, doi:10.4049/jimmunol.1303047 (2014).
46 Yue, Y. et al. IL4I1 Is a Novel Regulator of M2 Macrophage Polarization That Can Inhibit T Cell Activation via L-Tryptophan and Arginine Depletion and IL-10 Production. PloS one 10, e0142979-e0142979, doi:10.1371/journal.pone.0142979 (2015).
47 Hildeman, D. A. et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10, 735-744, doi:10.1016/s1074-7613(00)80072-2 (1999).
48 Makris, S., Paulsen, M. & Johansson, C. Type I Interferons as Regulators of Lung Inflammation. Frontiers in immunology 8, 259, doi:10.3389/fimmu.2017.00259 (2017).
49 Wood, J. L. N., Burrell, M. H., Roberts, C. A., Chanter, N. & Shaw, Y. Streptococci and Pastreurella spp.associated with disease of the equine lower respiratory - tract. Equine Veterinary Journal 25, 314-318 (1993).
50 Chapman, P. S. et al. Retrospective study of the relationships between age, inflammation and the isolation of bacteria from the lower respiratory tract of thoroughbred horses. Veterinary Record 146, 91-95 (2000).
51 Wood, J. L. N., Newton, J. R., Chanter, N. & Mumford, J. A. Association between respiratory disease and bacterial and viral infections in British racehorses. Journal of Clinical Microbiology 43, 120-126, doi:10.1128/jcm.43.1.120-126.2005 (2005).
52 Klaey, M. et al. Field case study of equine rhinovirus 1 infection: clinical signs and clinicopathology. Equine Vet J 30, 267-269, doi:10.1111/j.2042-3306.1998.tb04499.x (1998).
53 Black, W. D. et al. Prevalence of serum neutralising antibody to equine rhinitis A virus (ERAV), equine rhinitis B virus 1 (ERBV1) and ERBV2. Vet Microbiol 119, 65-71, doi:10.1016/j.vetmic.2006.08.031 (2007).
54 Wilsher, S., Allen, W. R. & Wood, J. L. N. Factors associated with failure of Thoroughbred horses to train and race. Pferdeheilkunde 22, 503-504 (2006).
55 Cardwell, J. M. Risk factors for inflammatory airway disease in UK National Hunt racehorses. Proceedings of the 4th World Equine airways Symposium,www.ivis.org (2009).
56 Cappelli, K. et al. Gallop Racing Shifts Mature mRNA towards Introns: Does Exercise-Induced Stress Enhance Genome Plasticity? Genes (Basel) 11, doi:10.3390/genes11040410 (2020).
57 Calbet, J. A. L., Martin-Rodriguez, S., Martin-Rincon, M. & Morales-Alamo, D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox biology, 101478, doi:10.1016/j.redox.2020.101478 (2020).
58 Powers, S. K. & Jackson, M. J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological reviews 88, 1243-1276, doi:10.1152/physrev.00031.2007 (2008).
59 Jackson, M. J. et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Molecular aspects of medicine 23, 209-285, doi:10.1016/s0098-2997(02)00018-3 (2002).
60 Williams, K. J. et al. Distribution of venous remodeling in exercise-induced pulmonary hemorrhage of horses follows reported blood flow distribution in the equine lung. Journal of Applied Physiology 114, 869-878 (2013).
61 Williams, K. J., Derksen, F. J., Defeijter-Rupp, H. L. & Robinson, N. E. Repeated blood instillation into the airway of the horse does not cause pulmonary fibrosis. Equine veterinary journal 43, 354-358, doi:10.1111/j.2042-3306.2010.00163.x (2011).
62 Ramery, E., Closset, R., Art, T., Bureau, F. & Lekeux, P. Expression microarrays in equine sciences. Veterinary Immunology and Immunopathology 127, 197-202, doi:10.1016/j.vetimm.2008.10.314 (2009).
63 Davis, K. U. & Sheats, M. K. Differential gene expression and Ingenuity Pathway Analysis of bronchoalveolar lavage cells from horses with mild/moderate neutrophilic or mastocytic inflammation on BAL cytology. Vet Immunol Immunopathol 234, 110195, doi:10.1016/j.vetimm.2021.110195 (2021).
64 Hansen, S. et al. Bronchoalveolar lavage fluid cytokine, cytology and IgE allergen in horses with equine asthma. Veterinary immunology and immunopathology 220, 109976, doi:10.1016/j.vetimm.2019.109976 (2020).
65 Gerber, V. et al. Mucin genes in horse airways: MUC5AC, but not MUC2, may play a role in recurrent airway obstruction. Equine veterinary journal 35, 252-257, doi:10.2746/042516403776148291 (2003).
66 Wang, H. et al. CSF3R/CD114 mediates infection-dependent transition to severe asthma. The Journal of allergy and clinical immunology 143, 785-788.e786, doi:10.1016/j.jaci.2018.10.001 (2019).
67 Roberts, A. W. G-CSF: A key regulator of neutrophil production, but that's not all! Growth Factors 23, 33-41, doi:doi:10.1080/08977190500055836 (2005).
68 Hamilton, J. A. Colony-stimulating factors in inflammation and autoimmunity. Nature Reviews. Immunology 8, 533-544, doi:10.1038/nri2356 (2008).
69 Palande, K., Meenhuis, A., Jevdjovic, T. & Touw, I. P. Scratching the surface: signaling and routing dynamics of the CSF3 receptor. Frontiers in bioscience (Landmark edition) 18, 91-105, doi:10.2741/4089 (2013).
70 Bucova, M. et al. Inflammatory marker sTREM-1 reflects the clinical stage and respiratory tract obstruction in allergic asthma bronchiale patients and correlates with number of neutrophils. Mediators of inflammation 2012, 628754, doi:10.1155/2012/628754 (2012).
71 Richard, E. A. et al. Cytokine concentrations in bronchoalveolar lavage fluid from horses with neutrophilic inflammatory airway disease. Journal of veterinary internal medicine 28, 1838-1844, doi:10.1111/jvim.12464 (2014).
72 Bullone, M. & Lavoie, J. P. Asthma "of horses and men"--how can equine heaves help us better understand human asthma immunopathology and its functional consequences? Mol Immunol 66, 97-105, doi:10.1016/j.molimm.2014.12.005 (2015).
73 Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLOS Biology 8, e1000412, doi:10.1371/journal.pbio.1000412 (2010).
74 Kidney, J. C. et al. Elevated B cells in sputum of asthmatics. Close correlation with eosinophils. Am J Respir Crit Care Med 153, 540-544, doi:10.1164/ajrccm.153.2.8564094 (1996).
75 Sikkeland, L. I., Kongerud, J., Stangeland, A. M., Haug, T. & Alexis, N. E. Macrophage enrichment from induced sputum. Thorax 62, 558-559, doi:10.1136/thx.2006.073544 (2007).
76 Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nature biotechnology 34, 525-527, doi:10.1038/nbt.3519 (2016).
77 Clark, E. L. et al. A high resolution atlas of gene expression in the domestic sheep (Ovis aries). PLoS Genet 13, e1006997, doi:10.1371/journal.pgen.1006997 (2017).
78 Young, R. et al. A Gene Expression Atlas of the Domestic Water Buffalo (Bubalus bubalis). Frontiers in genetics 10, 668, doi:10.3389/fgene.2019.00668 (2019).
79 Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal; Vol 17, No 1: Next Generation Sequencing Data AnalysisDO - 10.14806/ej.17.1.200 (2011).
80 Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics (Oxford, England) 32, 3047-3048, doi:10.1093/bioinformatics/btw354 (2016).
81 Ramery, E. et al. Expression microarray as a tool to identify differentially expressed genes in horses suffering from inflammatory airway disease. Vet Clin Pathol 44, 37-46, doi:10.1111/vcp.12216 (2015).
82 Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif.) 25, 402-408, doi:10.1006/meth.2001.1262 (2001).
83 Eaton, S. L. et al. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting. PloS one 8, e72457, doi:10.1371/journal.pone.0072457 (2013).
84 Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nature protocols 4, 484-494, doi:10.1038/nprot.2009.21 (2009).
85 Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nature protocols 2, 1896-1906, doi:10.1038/nprot.2007.261 (2007).
86 Withatanung, P. et al. Quantitative Proteomics Reveals Differences in the Response of Neutrophils Isolated from Healthy or Diabetic Subjects to Infection with Capsule-Variant Burkholderia thailandensis. J Proteome Res18, 2848-2858, doi:10.1021/acs.jproteome.9b00166 (2019).