Microwave Photonic Ising Machine
Ising machines based on analog systems have the potential of acceleration in solving ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machine is reported, e.g. superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin coherence is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement the Ising machine with large scale and also high coherence under room temperature. The proposed machine supports 10,000 spins, and the high coherence leads to accurate computation. Moreover, the Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward to solve real-world optimization problems.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
This is a list of supplementary files associated with this preprint. Click to download.
Supplementary Materials for Microwave Photonic Ising Machine
Posted 28 Sep, 2020
Microwave Photonic Ising Machine
Posted 28 Sep, 2020
Ising machines based on analog systems have the potential of acceleration in solving ubiquitous combinatorial optimization problems. Although some artificial spins to support large-scale Ising machine is reported, e.g. superconducting qubits in quantum annealers and short optical pulses in coherent Ising machines, the spin coherence is fragile due to the ultra-low equivalent temperature or optical phase sensitivity. In this paper, we propose to use short microwave pulses generated from an optoelectronic parametric oscillator as the spins to implement the Ising machine with large scale and also high coherence under room temperature. The proposed machine supports 10,000 spins, and the high coherence leads to accurate computation. Moreover, the Ising machine is highly compatible with high-speed electronic devices for programmability, paving a low-cost, accurate, and easy-to-implement way toward to solve real-world optimization problems.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6