(1) Prasher, D. C.; Eckenrode, V. K.; Ward, W. W.; Prendergast, F. G.; Cormier, M. J. Primary Structure of the Aequorea Victoria Green-Fluorescent Protein. Gene 1992. https://doi.org/10.1016/0378-1119(92)90691-H.
(2) Shcherbakova, D. M.; Stepanenko, O. V.; Turoverov, K. K.; Verkhusha, V. V. Near-Infrared Fluorescent Proteins: Multiplexing and Optogenetics across Scales. Trends Biotechnol. 2018, 36 (12), 1230–1243. https://doi.org/10.1016/J.TIBTECH.2018.06.011.
(3) Filonov, G. S.; Piatkevich, K. D.; Ting, L.-M.; Zhang, J.; Kim, K.; Verkhusha, V. V. Bright and Stable Near-Infrared Fluorescent Protein for in Vivo Imaging. Nat. Biotechnol. 2011, 29 (8). https://doi.org/10.1038/nbt.1918.
(4) Chu, J.; Haynes, R. D.; Corbel, S. Y.; Li, P.; González-González, E.; Burg, J. S.; Ataie, N. J.; Lam, A. J.; Cranfill, P. J.; Baird, M. A.; Davidson, M. W.; Ng, H. L.; Garcia, K. C.; Contag, C. H.; Shen, K.; Blau, H. M.; Lin, M. Z. Non-Invasive Intravital Imaging of Cellular Differentiation with a Bright Red-Excitable Fluorescent Protein. Nat. Methods 2014, 11 (5), 572–578. https://doi.org/10.1038/nmeth.2888.
(5) Shcherbakova, D. M.; Verkhusha, V. V. Near-Infrared Fluorescent Proteins for Multicolor in Vivo Imaging. Nat. Methods 2013, 10 (8), 751–754. https://doi.org/10.1038/nmeth.2521.
(6) Piatkevich, K. D.; Babakhanova, S.; Jung, E.; Namikawa, K.; ZHANG, H.; Subach, O.; Korzhenevskiy, D.; Rakitina, T.; Xiao, X.; Wang, W.; Shi, J.; Drobizhev, M.; Park, D.; Eisenhard, L.; Tang, H.; Koster, R.; Subach, F.; Boyden, E. Rapid Directed Molecular Evolution of Fluorescent Proteins in Mammalian Cells. bioRxiv 2021, 2021.08.02.454744. https://doi.org/10.1101/2021.08.02.454744.
(7) Qian, Y.; Piatkevich, K. D.; Mc Larney, B.; Abdelfattah, A. S.; Mehta, S.; Murdock, M. H.; Gottschalk, S.; Molina, R. S.; Zhang, W.; Chen, Y.; Wu, J.; Drobizhev, M.; Hughes, T. E.; Zhang, J.; Schreiter, E. R.; Shoham, S.; Razansky, D.; Boyden, E. S.; Campbell, R. E. A Genetically Encoded Near-Infrared Fluorescent Calcium Ion Indicator. Nat. Methods 2019, 16 (2), 171–174. https://doi.org/10.1038/s41592-018-0294-6.
(8) Qian, Y.; Cosio, D. M. O.; Piatkevich, K. D.; Aufmkolk, S.; Su, W.-C.; Celiker, O. T.; Schohl, A.; Murdock, M. H.; Aggarwal, A.; Chang, Y.-F.; Wiseman, P. W.; Ruthazer, E. S.; Boyden, E. S.; Campbell, R. E. Improved Genetically Encoded Near-Infrared Fluorescent Calcium Ion Indicators for in Vivo Imaging. PLOS Biol. 2020, 18 (11), e3000965. https://doi.org/10.1371/journal.pbio.3000965.
(9) Shcherbakova, D. M.; Cox Cammer, N.; Huisman, T. M.; Verkhusha, V. V.; Hodgson, L. Direct Multiplex Imaging and Optogenetics of Rho GTPases Enabled by Near-Infrared FRET Article. Nat. Chem. Biol. 2018, 14 (6), 591–600. https://doi.org/10.1038/s41589-018-0044-1.
(10) Shcherbakova, D. M.; Baloban, M.; Emelyanov, A. V.; Brenowitz, M.; Guo, P.; Verkhusha, V. V. Bright Monomeric Near-Infrared Fluorescent Proteins as Tags and Biosensors for Multiscale Imaging. Nat. Commun. 2016, 7, 1–12. https://doi.org/10.1038/ncomms12405.
(11) Kamper, M.; Ta, H.; Jensen, N. A.; Hell, S. W.; Jakobs, S. Near-Infrared STED Nanoscopy with an Engineered Bacterial Phytochrome. Nat. Commun. 2018, 9 (1), 1–7. https://doi.org/10.1038/s41467-018-07246-2.
(12) Wegner, W.; Ilgen, P.; Gregor, C.; van Dort, J.; Mott, A. C.; Steffens, H.; Willig, K. I. In Vivo Mouse and Live Cell STED Microscopy of Neuronal Actin Plasticity Using Far-Red Emitting Fluorescent Proteins. Sci. Reports 2017 71 2017, 7 (1), 1–10. https://doi.org/10.1038/s41598-017-11827-4.
(13) Matlashov, M. E.; Shcherbakova, D. M.; Alvelid, J.; Baloban, M.; Pennacchietti, F.; Shemetov, A. A.; Testa, I.; Verkhusha, V. V. A Set of Monomeric Near-Infrared Fluorescent Proteins for Multicolor Imaging across Scales. Nat. Commun. 2020, 11 (1), 1–12. https://doi.org/10.1038/s41467-019-13897-6.
(14) Piatkevich, K. D.; Subach, F. V; Verkhusha, V. V. Engineering of Bacterial Phytochromes for Near-Infrared Imaging, Sensing, and Light-Control in Mammals. Chem. Soc. Rev. 2013, 42 (8), 3441–3452. https://doi.org/10.1039/c3cs35458j.
(15) Shcherbakova, D. M.; Baloban, M.; Verkhusha, V. V. Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes. Curr. Opin. Chem. Biol. 2015, 27, 52–63. https://doi.org/10.1016/j.cbpa.2015.06.005.
(16) Piatkevich, K. D.; Suk, H.-J.; Kodandaramaiah, S. B.; Yoshida, F.; DeGennaro, E. M.; Drobizhev, M.; Hughes, T. E.; Desimone, R.; Boyden, E. S.; Verkhusha, V. V. Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes in Neuroimaging. Biophys. J. 2017, 113 (10). https://doi.org/10.1016/j.bpj.2017.09.007.
(17) Shemetov, A. A.; Monakhov, M. V.; Zhang, Q.; Canton-Josh, J. E.; Kumar, M.; Chen, M.; Matlashov, M. E.; Li, X.; Yang, W.; Nie, L.; Shcherbakova, D. M.; Kozorovitskiy, Y.; Yao, J.; Ji, N.; Verkhusha, V. V. A Near-Infrared Genetically Encoded Calcium Indicator for in Vivo Imaging. Nat. Biotechnol. 2020 393 2020, 39 (3), 368–377. https://doi.org/10.1038/s41587-020-0710-1.
(18) Yu, D.; Baird, M. A.; Allen, J. R.; Howe, E. S.; Klassen, M. P.; Reade, A.; Makhijani, K.; Song, Y.; Liu, S.; Murthy, Z.; Zhang, S.-Q.; Weiner, O. D.; Kornberg, T. B.; Jan, Y.-N.; Davidson, M. W.; Shu, X. A Naturally Monomeric Infrared Fluorescent Protein for Protein Labeling in Vivo. Nat. Methods 2015, 12 (8), 763–765. https://doi.org/10.1038/nmeth.3447.
(19) Strack, R. L.; Hein, B.; Bhattacharyya, D.; Hell, S. W.; Keenan, R. J.; Glick, B. S. A Rapidly Maturing Far-Red Derivative of DsRed-Express2 for Whole-Cell Labeling. Biochemistry 2009, 48 (35), 8279–8281. https://doi.org/10.1021/BI900870U.
(20) Rodriguez, E. A.; Tran, G. N.; Gross, L. A.; Crisp, J. L.; Shu, X.; Lin, J. Y.; Tsien, R. Y. A Far-Red Fluorescent Protein Evolved from a Cyanobacterial Phycobiliprotein. Nat. Methods 2016, 13 (9), 763–769. https://doi.org/10.1038/nmeth.3935.
(21) Ding, W. L.; Hou, Y. N.; Tan, Z. Z.; Jiang, S. P.; Miao, D.; Losi, A.; Gärtner, W.; Scheer, H.; Zhao, K. H. Far-Red Acclimating Cyanobacterium as Versatile Source for Bright Fluorescent Biomarkers. Biochim. Biophys. Acta - Mol. Cell Res. 2018, 1865 (11), 1649–1656. https://doi.org/10.1016/J.BBAMCR.2018.08.015.
(22) Li, X. D.; Tan, Z. Z.; Ding, W. L.; Hou, Y. N.; Kong, C. Di; Zhao, B. Q.; Zhao, K. H. Design of Small Monomeric and Highly Bright Near-Infrared Fluorescent Proteins. Biochim. Biophys. Acta - Mol. Cell Res. 2019, 1866 (10), 1608–1617. https://doi.org/10.1016/J.BBAMCR.2019.06.018.
(23) Rogers, O. C.; Johnson, D. M.; Firnberg, E. MRhubarb: Engineering of Monomeric, Red-Shifted, and Brighter Variants of IRFP Using Structure-Guided Multi-Site Mutagenesis. Sci. Rep. 2019, 9 (1), 1–8. https://doi.org/10.1038/s41598-019-52123-7.
(24) Filonov, G. S.; Piatkevich, K. D.; Ting, L.-M. M.; Zhang, J.; Kim, K.; Verkhusha, V. V. Bright and Stable Near-Infrared Fluorescent Protein for in Vivo Imaging. Nat. Biotechnol. 2011, 29 (8), 757–761. https://doi.org/10.1038/nbt.1918.
(25) Piatkevich, K. D.; Jung, E. E.; Straub, C.; Linghu, C.; Park, D.; Suk, H. J.; Hochbaum, D. R.; Goodwin, D.; Pnevmatikakis, E.; Pak, N.; Kawashima, T.; Yang, C. T.; Rhoades, J. L.; Shemesh, O.; Asano, S.; Yoon, Y. G.; Freifeld, L.; Saulnier, J. L.; Riegler, C.; Engert, F.; Hughes, T.; Drobizhev, M.; Szabo, B.; Ahrens, M. B.; Flavell, S. W.; Sabatini, B. L.; Boyden, E. S. A Robotic Multidimensional Directed Evolution Approach Applied to Fluorescent Voltage Reporters Article. Nat. Chem. Biol. 2018, 14 (4), 352–360. https://doi.org/10.1038/s41589-018-0004-9.
(26) Piatkevich, K. D.; Suk, H.-J.; Kodandaramaiah, S. B.; Yoshida, F.; DeGennaro, E. M.; Drobizhev, M.; Hughes, T. E.; Desimone, R.; Boyden, E. S.; Verkhusha, V. V. Near-Infrared Fluorescent Proteins Engineered from Bacterial Phytochromes in Neuroimaging. Biophys. J. 2017, 113 (10), 2299–2309. https://doi.org/10.1016/j.bpj.2017.09.007.
(27) Cranfill, P. J.; Sell, B. R.; Baird, M. A.; Allen, J. R.; Lavagnino, Z.; de Gruiter, H. M.; Kremers, G.-J. J.; Davidson, M. W.; Ustione, A.; Piston, D. W. Quantitative Assessment of Fluorescent Proteins. Nat. Methods 2016, 13 (7), 557–562. https://doi.org/10.1038/nmeth.3891.
(28) Costantini, L. M.; Fossati, M.; Francolini, M.; Snapp, E. L. Assessing the Tendency of Fluorescent Proteins to Oligomerize Under Physiologic Conditions. Traffic 2012, 13 (5), 643–649. https://doi.org/10.1111/j.1600-0854.2012.01336.x.
(29) Drobizhev, M.; Molina, R.; Hughes, T. Characterizing the Two-Photon Absorption Properties of Fluorescent Molecules in the 680-1300 Nm Spectral Range. BIO-PROTOCOL 2020, 10 (2). https://doi.org/10.21769/bioprotoc.3498.
(30) Kim, J.-Y.; Grunke, S. D.; Levites, Y.; Golde, T. E.; Jankowsky, J. L. Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction. JoVE (Journal Vis. Exp. 2014, No. 91, e51863. https://doi.org/10.3791/51863.
(31) Shu, X.; Royant, A.; Lin, M. Z.; Aguilera, T. A.; Lev-Ram, V.; Steinbach, P. A.; Tsien, R. Y. Mammalian Expression of Infrared Fluorescent Proteins Engineered from a Bacterial Phytochrome. Science (80-. ). 2009, 324 (5928), 804–807. https://doi.org/10.1126/science.1168683.
(32) Namikawa, K.; Dorigo, A.; Zagrebelsky, M.; Russo, G.; Kirmann, T.; Fahr, W.; Dübel, S.; Korte, M.; Köster, R. W. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J. Neurosci. 2019, 39 (20), 3948–3969. https://doi.org/10.1523/JNEUROSCI.1862-18.2019.