[1] R. L. SIEGEL, K. D. MILLER, A. JEMAL, Cancer statistics, 2019, CA Cancer J Clin. 69 (2019) 7-34. https://doi.org/10.3322/caac.21551
[2] D. QI, C. WU, F. LIU, K. GU, Z. SHI, X. LIN, S. TAO, W. XU, C. B. BRENDLER, Y. ZHENG, J. XU, Trends of prostate cancer incidence and mortality in Shanghai, China from 1973 to 2009, Prostate. 75 (2015) 1662-1668. https://doi.org/10.1002/pros.23046
[3] R. LI, Y. QUAN, W. XIA, SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/beta-catenin pathway, Exp Cell Res. 364 (2018) 143-151. https://doi.org/10.1016/j.yexcr.2018.01.036
[4] Y. LIU, X. AO, W. DING, M. PONNUSAMY, W. WU, X. HAO, W. YU, Y. WANG, P. LI, J. WANG, Critical role of FOXO3a in carcinogenesis, Mol Cancer. 17 (2018) 104. https://doi.org/10.1186/s12943-018-0856-3
[5] H. LIU, J. YIN, H. WANG, G. JIANG, M. DENG, G. ZHANG, X. BU, S. CAI, J. DU, Z. HE, FOXO3a modulates WNT/beta-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells, Cell Signal. 27 (2015) 510-518. https://doi.org/10.1016/j.cellsig.2015.01.001
[6] Z. SHAN, Y. LI, S. YU, J. WU, C. ZHANG, Y. MA, G. ZHUANG, J. WANG, Z. GAO, D. LIU, CTCF regulates the FoxO signaling pathway to affect the progression of prostate cancer, J Cell Mol Med. 23 (2019) 3130-3139. https://doi.org/10.1111/jcmm.14138
[7] Z. LU, R. ZHOU, Y. KONG, J. WANG, W. XIA, J. GUO, J. LIU, H. SUN, K. LIU, J. YANG, M. MI, H. XU, S-equol, a Secondary Metabolite of Natural Anticancer Isoflavone Daidzein, Inhibits Prostate Cancer Growth In Vitro and In Vivo, Though Activating the Akt/FOXO3a Pathway, Curr Cancer Drug Targets. 16 (2016) 455-465. https://doi.org/10.2174/1568009616666151207105720
[8] C. OAK, A. O. KHALIFA, I. ISALI, N. BHASKARAN, E. WALKER, S. SHUKLA, Diosmetin suppresses human prostate cancer cell proliferation through the induction of apoptosis and cell cycle arrest, Int J Oncol. 53 (2018) 835-843. https://doi.org/10.3892/ijo.2018.4407
[9] L. RUAN, L. WANG, X. WANG, M. HE, X. YAO, SIRT1 contributes to neuroendocrine differentiation of prostate cancer, Oncotarget. 9 (2018) 2002-2016. https://doi.org/10.18632/oncotarget.23111
[10] J. KIM, H. CHOI, E. G. CHO, T. R. LEE, FoxO3a is an antimelanogenic factor that mediates antioxidant-induced depigmentation, J Invest Dermatol. 134 (2014) 1378-1388. https://doi.org/10.1038/jid.2013.510
[11] A. K. BROWN, A. E. WEBB, Regulation of FOXO Factors in Mammalian Cells, Curr Top Dev Biol. 127 (2018) 165-192. https://doi.org/10.1016/bs.ctdb.2017.10.006
[12] D. S. CHANDRASHEKAR, B. BASHEL, S. A. H. BALASUBRAMANYA, C. J. CREIGHTON, I. PONCE-RODRIGUEZ, B. CHAKRAVARTHI, S. VARAMBALLY, UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses, Neoplasia. 19 (2017) 649-658. https://doi.org/10.1016/j.neo.2017.05.002
[13] Z. TANG, C. LI, B. KANG, G. GAO, C. LI, Z. ZHANG, GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses, Nucleic Acids Res. 45 (2017) W98-W102. https://doi.org/10.1093/nar/gkx247
[14] S. SHUKLA, M. SHUKLA, G. T. MACLENNAN, P. FU, S. GUPTA, Deregulation of FOXO3A during prostate cancer progression, Int J Oncol. 34 (2009) 1613-1620. https://doi.org/10.3892/ijo_00000291
[15] S. SHUKLA, N. BHASKARAN, G. T. MACLENNAN, S. GUPTA, Deregulation of FoxO3a accelerates prostate cancer progression in TRAMP mice, Prostate. 73 (2013) 1507-1517. https://doi.org/10.1002/pros.22698
[16] R. L. LYNCH, B. W. KONICEK, A. M. MCNULTY, K. R. HANNA, J. E. LEWIS, B. L. NEUBAUER, J. R. GRAFF, The progression of LNCaP human prostate cancer cells to androgen independence involves decreased FOXO3a expression and reduced p27KIP1 promoter transactivation, Mol Cancer Res. 3 (2005) 163-169. https://doi.org/10.1158/1541-7786.MCR-04-0163
[17] W. Q. TAN, K. WANG, D. Y. LV, P. F. LI, Foxo3a inhibits cardiomyocyte hypertrophy through transactivating catalase, J Biol Chem. 283 (2008) 29730-29739. https://doi.org/10.1074/jbc.M805514200
[18] C. GLORIEUX, M. ZAMOCKY, J. M. SANDOVAL, J. VERRAX, P. B. CALDERON, Regulation of catalase expression in healthy and cancerous cells, Free Radic Biol Med. 87 (2015) 84-97. https://doi.org/10.1016/j.freeradbiomed.2015.06.017
[19] C. GLORIEUX, P. B. CALDERON, Catalase, a remarkable enzyme: targeting the oldest antioxidant enzyme to find a new cancer treatment approach, Biol Chem. 398 (2017) 1095-1108. https://doi.org/10.1515/hsz-2017-0131
[20] T. S. HWANG, H. K. CHOI, H. S. HAN, Differential expression of manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase in gastric adenocarcinoma and normal gastric mucosa, Eur J Surg Oncol. 33 (2007) 474-479. https://doi.org/10.1016/j.ejso.2006.10.024
[21] C. GLORIEUX, J. M. SANDOVAL, N. DEJEANS, S. NONCKREMAN, K. BAHLOULA, H. A. POIREL, P. B. CALDERON, Evaluation of Potential Mechanisms Controlling the Catalase Expression in Breast Cancer Cells, Oxid Med Cell Longev. 2018 (2018) 5351967. https://doi.org/10.1155/2018/5351967
[22] J. N. MOLONEY, T. G. COTTER, ROS signalling in the biology of cancer, Semin Cell Dev Biol. 80 (2018) 50-64. https://doi.org/10.1016/j.semcdb.2017.05.023
[23] S. PRASAD, S. C. GUPTA, A. K. TYAGI, Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals, Cancer Lett. 387 (2017) 95-105. https://doi.org/10.1016/j.canlet.2016.03.042
[24] C. R. RECZEK, N. S. CHANDEL, ROS Promotes Cancer Cell Survival through Calcium Signaling, Cancer Cell. 33 (2018) 949-951. https://doi.org/10.1016/j.ccell.2018.05.010
[25] N. DASTMALCHI, B. BARADARAN, S. LATIFI-NAVID, R. SAFARALIZADEH, S. M. B. KHOJASTEH, M. AMINI, E. ROSHANI, P. LOTFINEJAD, Antioxidants with two faces toward cancer, Life Sci. 258 (2020) 118186. https://doi.org/10.1016/j.lfs.2020.118186
[26] L. HE, T. HE, S. FARRAR, L. JI, T. LIU, X. MA, Antioxidants Maintain Cellular Redox Homeostasis by Elimination of Reactive Oxygen Species, Cell Physiol Biochem. 44 (2017) 532-553. https://doi.org/10.1159/000485089
[27] L. CHEN, G. LI, F. PENG, X. JIE, G. DONGYE, K. CAI, R. FENG, B. LI, Q. ZENG, K. LUN, J. CHEN, B. XU, The induction of autophagy against mitochondria-mediated apoptosis in lung cancer cells by a ruthenium (II) imidazole complex, Oncotarget. 7 (2016) 80716-80734. https://doi.org/10.18632/oncotarget.13032