1 Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663-676, doi:10.1016/j.cell.2006.07.024 (2006).
2 Yu, J. Y. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917-1920, doi:10.1126/science.1151526 (2007).
3 Robinton, D. A. & Daley, G. Q. The promise of induced pluripotent stem cells in research and therapy. Nature481, 295-305, doi:10.1038/nature10761 (2012).
4 Yamanaka, S. Pluripotent Stem Cell-Based Cell Therapy- Promise and Challenges. Cell Stem Cell27, 523-531, doi:10.1016/j.stem.2020.09.014 (2020).
5 Haridhasapavalan, K. K. et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene686, 146-159, doi:10.1016/j.gene.2018.11.069 (2019).
6 Hu, K. J. All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem Cells Dev23, 1285-1300, doi:10.1089/scd.2013.0620 (2014).
7 Jia, F. et al. A nonviral minicircle vector for deriving human iPS cells. Nature methods7, 197-199, doi:10.1038/nmeth.1426 (2010).
8 Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nature methods8, 409-412, doi:10.1038/nmeth.1591 (2011).
9 Bar-Nur, O. et al. Small molecules facilitate rapid and synchronous iPSC generation. Nat Methods11, 1170-1176, doi:10.1038/nmeth.3142 (2014).
10 Jung, D. W., Kim, W. H. & Williams, D. R. Reprogram or Reboot: Small Molecule Approaches for the Production of Induced Pluripotent Stem Cells and Direct Cell Reprogramming. Acs Chem Biol9, 80-95, doi:10.1021/cb400754f (2014).
11 Shao, Z. et al. Reprogramming by De-bookmarking the Somatic Transcriptional Program through Targeting of BET Bromodomains. Cell Rep16, 3138-3145, doi:10.1016/j.celrep.2016.08.060 (2016).
12 Yasuda, S. Y. et al. Chemically defined and growth-factor-free culture system for the expansion and derivation of human pluripotent stem cells. Nat Biomed Eng2, 173-182, doi:10.1038/s41551-018-0200-7 (2018).
13 Chen, G., Guo, Y., Li, C., Li, S. & Wan, X. Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem cell reviews and reports16, 511-523, doi:10.1007/s12015-020-09965-w (2020).
14 Huangfu, D. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol26, 795-797, doi:10.1038/nbt1418 (2008).
15 Shi, Y. et al. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell stem cell3, 568-574, doi:10.1016/j.stem.2008.10.004 (2008).
16 Ichida, J. K. et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell stem cell5, 491-503, doi:10.1016/j.stem.2009.09.012 (2009).
17 Zhu, S. et al. Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell stem cell7, 651-655, doi:10.1016/j.stem.2010.11.015 (2010).
18 Plath, K. & Lowry, W. E. Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet12, 253-265, doi:10.1038/nrg2955 (2011).
19 Takahashi, K. & Yamanaka, S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Bio17, 183-193, doi:10.1038/nrm.2016.8 (2016).
20 Liu, G., David, B. T., Trawczynski, M. & Fessler, R. G. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem cell reviews and reports16, 3-32, doi:10.1007/s12015-019-09935-x (2020).
21 de I'Hortet, A. C. et al. Generation of Human Fatty Livers Using Custom-Engineered Induced Pluripotent Stem Cells with Modifiable SIRT1 Metabolism. Cell Metab30, 385-401, doi:10.1016/j.cmet.2019.06.017 (2019).
22 Ouchi, R. et al. Modeling Steatohepatitis in Humans with Pluripotent Stem Cell-Derived Organoids. Cell Metab30, 374-386, doi:10.1016/j.cmet.2019.05.007 (2019).
23 Doi, D. et al. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson's disease. Nature Communications11, doi:ARTN 336910.1038/ s41467-020-17165-w (2020).
24 Xu, Z. et al. Wnt/β-catenin signaling promotes self-renewal and inhibits the primed state transition in naïve human embryonic stem cells. Proc Natl Acad Sci U S A113, 6382-6390, doi:10.1073/pnas.1613849113 (2016).
25 Hasegawa, K. et al. Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med1, 18-28, doi:10.5966/sctm.2011-0033 (2012).
26 Beers, J. et al. Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions. Nature protocols7, 2029-2040, doi:10.1038/nprot.2012.130 (2012).
27 Chen, G. K. et al. Chemically defined conditions for human iPSC derivation and culture. Nature Methods8, 424-476, doi:10.1038/Nmeth.1593 (2011).
28 Greber, B., Lehrach, H. & Adjaye, J. Fibroblast growth factor 2 modulates transforming growth factor beta signaling in mouse embryonic fibroblasts and human ESCs (hESCs) to support hESC self-renewal. Stem Cells25, 455-464, doi:10.1634/stemcells.2006-0476 (2007).
29 Abbot, E. L. et al. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells. Febs J272, 3004-3014, doi:10.1111/j.1742-4658.2005.04713.x (2005).
30 Cadoudal, T. et al. Pyruvate dehydrogenase kinase 4 - Regulation by thiazolidinediones and implication in glyceroneogenesis in adipose tissue. Diabetes57, 2272-2279, doi:10.2337/db08-0477 (2008).
31 Fei, T. & Chen, Y. G. Regulation of embryonic stem cell self-renewal and differentiation by TGF-beta family signaling. Sci China Life Sci53, 497-503, doi:10.1007/s11427-010-0096-2 (2010).
32 Li, W., Wei, W. & Ding, S. TGF-beta Signaling in Stem Cell Regulation. Methods Mol Biol1344, 137-145, doi:10.1007/978-1-4939-2966-5_8 (2016).
33 Wang, J., Zhou, J., Zhang, N., Zhang, X. L. & Li, Q. F. A heterocyclic molecule kartogenin induces collagen synthesis of human dermal fibroblasts by activating the smad4/smad5 pathway. Biochem Bioph Res Co450, 568-574, doi:10.1016/j.bbrc.2014.06.016 (2014).
34 Kuo, H. H. et al. Negligible-Cost and Weekend-Free Chemically Defined Human iPSC Culture. Stem Cell Reports14, 256-270, doi:10.1016/j.stemcr.2019.12.007 (2020).
35 Folmes, C. D. L. et al. Somatic Oxidative Bioenergetics Transitions into Pluripotency-Dependent Glycolysis to Facilitate Nuclear Reprogramming. Cell Metab14, 264-271, doi:10.1016/j.cmet.2011.06.011 (2011).
36 Ryall, J. G., Cliff, T., Dalton, S. & Sartorelli, V. Metabolic Reprogramming of Stem Cell Epigenetics. Cell Stem Cell17, 651-662, doi:10.1016/j.stem.2015.11.012 (2015).
37 Nishimura, K., Fukuda, A. & Hisatake, K. Mechanisms of the Metabolic Shift during Somatic Cell Reprogramming. Int J Mol Sci20, doi:ARTN 225410.3390/ijms20092254 (2019).
38 Ishida, T., Nakao, S., Ueyama, T., Harada, Y. & Kawamura, T. Metabolic remodeling during somatic cell reprogramming to induced pluripotent stem cells: involvement of hypoxia-inducible factor 1. Inflamm Regen40, doi:ARTN 810.1186/s41232-020-00117-8 (2020).
39 Prigione, A. et al. HIF1 alpha Modulates Cell Fate Reprogramming Through Early Glycolytic Shift and Upregulation of PDK1-3 and PKM2. Stem Cells32, 364-376, doi:10.1002/stem.1552 (2014).
40 Han, J. E. et al. Inhibition of HIF1 alpha and PDK Induces Cell Death of Glioblastoma Multiforme. Exp Neurobiol26, 295-306, doi:10.5607/en.2017.26.5.295 (2017).
41 Sradhanjali, S. & Reddy, M. M. Inhibition of Pyruvate Dehydrogenase Kinase as a Therapeutic Strategy against Cancer. Curr Top Med Chem18, 444-453, doi:10.2174/1568026618666180523105756 (2018).