Alfieri L, Feyen L, Di Baldassarre G (2016) Increasing flood risk under climate change: a pan-European assessment of the benefits of four adaptation strategies. Clim Change 136: 507-521. https://doi.org/10.1007/s10584-016-1641-1
Ashkar F, Aucoin F (2011) A broader look at bivariate distributions applicable in hydrology. J Hydrol 405: 451–461
Bender J, Wahl T, Müller A et al (2016) A multivariate design framework for river confluences. Hydrolog Sci J 61: 3,471-482. https://doi.org/10.1080/02626667.2015.1052816
Bing JP, Deng PX, Zhang X et al (2018) Flood coincidence analysis of Poyang Lake and Yangtze River: risk and influencing factors. Stoch Environ Res Risk Assess 32: 879–891. https://doi.org/10.1007/s00477-018-1514-4
Chen L, Singh VP, Guo SL et al (2012) Flood coincidence risk analysis using multivariate copula functions. J Hydrol Eng 17(6): 742–755. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000504
Chen L, Singh VP, Lu WW et al (2016) Streamflow forecast uncertainty evolution and its effect on real-time reservoir operation. J Hydrol 540: 712–726
Clayton DG (1978) A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65(1): 141–151. https://doi.org/10.1093 /biomet/65.1.141
Deidda C, Rahimi L, De Michele C (2021) Causes of dependence between extreme floods. Environ Res Lett. 10.1088/1748-9326/ac07d5.
Dodangeh E, Singh VP, Pham BT et al (2020) Flood frequency analysis of interconnected rivers by copulas. Water Resour Manag 34: 3533–3549. https://doi.org/10.1007/s11269-020-02634-0
Feng Y, Shi P, Qu SM et al (2020) Nonstationary flood coincidence risk analysis using time-varying copula functions. Sci Rep 10: 3395. https://doi.org/10.1038/s41598-020-60264-3
Frank MJ (1979) On the simultaneous associatively of F(x,y) and x+y-F(x,y). Aequationes Math 19(1): 194–226. https://doi.org/10.1007/BF02189866
Gilja G, Ocvirk E, Kuspilić N (2018) Joint probability analysis of flood hazard at river confluences using bivariate copulas. GRAĐEVINAR 70: 267-275
Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68(3): 813–814. https://doi.org/10.1029/JZ068i003p00813
Guo SL, Muhammad R, Liu ZJ et al (2018) Design flood estimation methods for cascade reservoirs based on copulas. Water 10(5): 560
Hougaard P (1986) A class of multivariate failure time distributions. Biometrika 73(3): 671–678. https://doi.org/10.2307/2336531
Huang KD, Chen L, Zhou JZ et al (2018) Flood hydrograph coincidence analysis for mainstream and its tributaries. J Hydrol 565: 341-353
Jane R, Cadavid L, Obeysekera J et al (2020) Multivariate statistical modelling of the drivers of compound flood events in south Florida. Nat Hazards Earth Syst Sci 20: 2681-2699
Karahacane H, Meddi M, Chebana F, Saaed HA (2020) Complete multivariate flood frequency analysis, applied to northern Algeria. J Flood Risk Manag 13: e12619
KvočKa D, Falconer RA, Bray M (2016) Flood hazard assessment for extreme flood events. Nat Hazards 84(3): 1569-1599
Moftakhari H, Schubert JE, AghaKouchak A et al (2019) Linking statistical and hydrodynamic modeling for compound flood hazard assessment in tidal channels and estuaries. Adv Water Resour 128: 28-38
Montaseri M, Amirataee B, Rezaie H (2018) New approach in bivariate drought duration and severity analysis. J Hydrol 559: 166–181.
Muthuvel D, Mahesha A (2021) Copula-based frequency and coincidence risk analysis of floods in tropical-seasonal rivers. J Hydrol Eng 26(5). https://orcid.org/0000-0002-5903-7276
MWR (Ministry of Water Resources) (2006) Regulation for Calculating Design Flood of Water Resources and Hydropower Projects. Chinese Shuili Shuidian Press, Beijing (in Chinese)
Nelsen RB (2006) An introduction to copulas, 2nd ed. Springer, New York
Peng Y, Chen K, Yan HX, Yu XL (2017) Improving flood-risk analysis for confluence flooding control downstream using Copula Monte Carlo method. J Hydrol Eng 22(8): 04017018. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001526
Peng Y, Shi YL, Yan HX, Chen K (2019) Coincidence risk analysis of floods using multivariate copulas: case study of Jinsha River and Min River, China. J Hydrol Eng 24(2): 05018030. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001744
Prohaska S, Ilic A (2010) Coincidence of flood flow of the Danube river and its tributaries. Springer Dordrecht. https://doi.org/10.1007/978-90-481-3423-6_6
Schulte M, Schumann AH (2016) Evaluation of flood coincidence and retention measures by copulas. Wasserwirtschaft 106(2–3): 81–87
Tsakiris G, Kordalis N, Tsakiris V (2015) Flood double frequency analysis: 2D-Archimedean copulas vs bivariate probability distributions. Environ Process 2: 705–716. https://doi.org/10.1007/s40710-015-0078-2
Wang C (2016) A joint probability approach for coincidental flood frequency analysis at ungauged basin confluences. Nat Hazards 82(3): 1727-1741. https://doi.org/10.1007/s11069-016-2265-5
Yin JB, Guo SL, Liu ZJ et al (2018) Uncertainty analysis of bivariate design flood estimation and its impacts on reservoir routing. Water Resour Manag 32(5): 1795-1809
Zhang L, Singh VP (2012) Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy 14(9): 1784–1812. https://doi.org/10.3390/e14091784.
Zhong YX, Guo SL, Liu ZJ et al (2018) Quantifying differences between reservoir inflows and dam site floods using frequency and risk analysis methods. Stoch Environ Res Risk Assess 32(2): 419-433